File size: 9,810 Bytes
814ce70
 
 
 
 
 
 
 
 
 
 
06326ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7001066
 
 
 
 
 
 
 
 
 
 
 
 
043861d
7001066
06326ea
7001066
06326ea
 
 
 
7001066
 
35ac3ff
9d9276d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06326ea
 
 
 
 
9d9276d
06326ea
814ce70
06326ea
814ce70
 
 
 
 
 
 
9d9276d
 
6319656
9d9276d
814ce70
 
 
9d9276d
814ce70
9d9276d
814ce70
 
 
 
06326ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
814ce70
 
 
 
 
 
 
 
06326ea
814ce70
 
 
 
06326ea
814ce70
 
 
06326ea
814ce70
06326ea
 
 
 
 
814ce70
 
 
 
06326ea
814ce70
06326ea
814ce70
9d9276d
 
 
 
 
 
06326ea
814ce70
 
06326ea
 
9d9276d
 
06326ea
 
 
814ce70
06326ea
814ce70
06326ea
814ce70
06326ea
 
9d9276d
814ce70
 
06326ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
814ce70
 
 
06326ea
 
 
 
 
814ce70
06326ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import streamlit as st

import jax
import optax
import jax.numpy as jnp
import flax.linen as nn
from flax.linen.initializers import zeros
from tinygp import kernels, transforms, GaussianProcess
import numpy as np
import matplotlib.pyplot as plt

mcycle_x = np.array([  35.2,   27.6,   35.6,   28.2,   57.6,   26.4,   46.6,   55. ,
          16.6,    8.2,   32.8,   19.2,   14.6,   42.8,    9.6,   50.6,
           2.4,   34.8,   33.4,    6.2,   34.4,   29.4,   25.6,   16. ,
          13.8,   15.6,   20.2,   44.4,    3.6,   21.2,    8.8,   24.2,
          45. ,   33.8,    7.8,   38. ,    2.6,   41.6,   20.4,   23.2,
          26. ,   40. ,   28.4,   55.4,   15.4,   53.2,   11.4,   48.8,
          25.4,   13.6,   39.2,   40.4,   16.8,    4. ,   43. ,   15.8,
          24.6,   16.4,   28.6,   52. ,   30.2,   18.6,   10.2,   32. ,
           6.6,   17.6,   19.6,   24. ,   16.2,   42.4,   22. ,   23.4,
          44. ,    6.8,   11. ,   10.6,   26.2,   39.4,   31.2,   19.4,
          21.4,   27.2,   47.8,   35.4,   13.2,   31. ,   36.2,   14.8,
           3.2,   25. ,   21.8,   17.8,   27. ,   10. ])

mcycle_y = np.array([ -16. ,    4. ,   34.8,   12. ,   10.7,  -65.6,   10.7,   -2.7,
         -59. ,   -2.7,   46.9, -123.1,  -13.3,    0. ,   -2.7,    0. ,
           0. ,   75. ,   16. ,   -2.7,    1.3,  -17.4,  -26.8,  -42.9,
           0. ,  -40.2, -123.1,    0. ,    0. , -134. ,   -1.3,  -95.1,
          10.7,   45.6,   -2.7,   46.9,   -1.3,   30.8, -117.9, -123.1,
          -5.4,  -21.5,  -21.5,   -2.7,  -22.8,  -14.7,    0. ,  -13.3,
         -72.3,   -2.7,    5.4,  -13.3,  -71. ,   -2.7,   14.7,  -21.5,
         -53.5,   -5.4,   46.9,   10.7,   36.2, -112.5,   -5.4,   54.9,
          -2.7,  -37.5, -127.2, -112.5,  -21.5,   29.4, -123.1, -128.5,
          -1.3,   -1.3,   -5.4,   -2.7, -107.1,   -1.3,    8.1,  -85.6,
        -101.9,  -45.6,  -26.8,   69.6,   -2.7,   75. ,  -37.5,   -2.7,
          -2.7,  -64.4, -108.4,  -99.1,  -16. ,   -2.7])

oly_x = np.array([1896.        , 1900.        , 1904.        , 1908.        ,
        1912.        , 1920.        , 1924.        , 1928.        ,
        1932.        , 1936.        , 1948.        , 1952.        ,
        1956.        , 1960.        , 1964.        , 1968.        ,
        1972.        , 1976.        , 1980.        , 1984.        ,
        1988.        , 1992.        , 1996.        , 2000.        ,
        2004.        , 2008.        , 2012.        ])

oly_y = np.array([   4.47083333,    4.46472926,    5.22208333,    4.15467867,
           3.90331675,    3.56951267,    3.82454477,    3.62483707,
           3.59284275,    3.53880792,    3.67010309,    3.39029111,
           3.43642612,    3.20583007,    3.13275665,    3.32819844,
           3.13583758,    3.0789588 ,    3.10581822,    3.06552909,
           3.09357349,    3.16111704,    3.14255244,    3.08527867,
           3.10265829,    2.99877553,    3.03392977])

st.title("Heteroscedastic Gaussian Processes")

st.markdown(r"""
    Gaussian processes generally assume Homoskedastic noise such as:
    $$
    y_{i}=f\left(\mathbf{x}_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right), \quad 1 \leq i \leq n
    $$
    We can also assume separate distribution of noise over each data point:       
    $$
    y_{i}=f\left(\mathbf{x}_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} {\sim} \mathcal{N}\left(0, \sigma_{\epsilon_i}^{2}\right), \quad 1 \leq i \leq n
    $$ 
    However, this may not be straightforward to extend for inference or conditioning. A simple idea can be to learn a non-linear neural network function to model the relationship between inputs and noise:
    $$
    \sigma_{\epsilon_i} = f(\mathbf{x}_i)
    $$
    This demo is an attempt to experiment with this idea on several synthetic and real datasets with Heteroskedastic noise.
             """)

data = st.selectbox("Data", ["Motorcycle", "Olympic", "Linear", 'GPflow'])
if data == "Motorcycle":
    data_x, data_y = mcycle_x, mcycle_y
elif data == "Olympic":
    data_x, data_y = oly_x, oly_y
elif data == "Linear":
    data_x = np.linspace(0,1,99)
    data_y = 3 * data_x + 2 + (np.random.randn(data_x.shape[0]) * data_x)
elif data == 'GPflow':
    N = 1001

    # Build inputs X
    data_x = np.linspace(0, 4 * np.pi, N)

    # Deterministic functions in place of latent ones
    f1 = np.sin
    f2 = np.cos

    # Use transform = exp to ensure positive-only scale values
    transform = np.exp

    # Compute loc and scale as functions of input X
    loc = f1(data_x)
    scale = transform(f2(data_x))

    # Sample outputs Y from Gaussian Likelihood
    data_y = np.random.normal(loc, scale)
    
x = (data_x - data_x.mean()) / data_x.std()
y = (data_y - data_y.mean()) / data_y.std()

n_tests = st.number_input(
    "Number of test points", min_value=50, max_value=1000, value=100
)

t = np.linspace(x.min(), x.max(), n_tests)
noise = 0.01

# x = np.sort(random.uniform(-1, 1, 100))
# y = 2 * (x > 0) - 1 + random.normal(0.0, noise, len(x))
# t = np.linspace(-1.5, 1.5, 500)

# Define a small neural network used to non-linearly transform the input data in our model

fet1 = st.slider("Number of neurons in Layer1", min_value=2, max_value=30, value=15)
fet2 = st.slider("Number of neurons in Layer2", min_value=2, max_value=30, value=10)

class Transformer(nn.Module):
    @nn.compact
    def __call__(self, x):
        x = nn.Dense(features=fet1)(x)
        x = nn.relu(x)
        x = nn.Dense(features=fet2)(x)
        x = nn.relu(x)
        x = nn.Dense(features=1)(x)
        return x

class BaseGPLoss(nn.Module):
    @nn.compact
    def __call__(self, x, y, t):
        # Set up a typical Matern-3/2 kernel
        log_sigma = self.param("log_sigma", zeros, ())
        log_rho = self.param("log_rho", zeros, ())
        log_jitter = self.param("log_jitter", zeros, ())
        kernel = jnp.exp(2 * log_sigma) * kernels.Matern32(jnp.exp(log_rho))

        # Evaluate and return the GP negative log likelihood as usual
        gp = GaussianProcess(kernel, x[:, None], diag=noise**2 + jnp.exp(log_jitter))
        log_prob, gp_cond = gp.condition(y, t[:, None])
        return (
            -log_prob,
            (gp_cond.loc, gp_cond.variance),
            jnp.exp(log_jitter),
        )


class GPLoss(nn.Module):
    @nn.compact
    def __call__(self, x, y, t):
        # Set up a typical Matern-3/2 kernel
        log_sigma = self.param("log_sigma", zeros, ())
        log_rho = self.param("log_rho", zeros, ())
        # log_jitter = self.param("log_jitter", zeros, ())
        base_kernel = jnp.exp(2 * log_sigma) * kernels.Matern32(jnp.exp(log_rho))

        # Define a custom transform to pass the input coordinates through our `Transformer`
        # network from above
        transform = Transformer()
        log_jitter = transform(x.reshape(-1, 1)).ravel()
        kernel = base_kernel

        # Evaluate and return the GP negative log likelihood as usual
        gp = GaussianProcess(kernel, x[:, None], diag=noise**2 + jnp.exp(log_jitter))
        log_prob, gp_cond = gp.condition(y, t[:, None])
        return (
            -log_prob,
            (gp_cond.loc, gp_cond.variance),
            jnp.exp(transform(t[:, None])),
        )


# Define and train the model
def loss(params):
    return m.apply(params, x, y, t)[0]

base_model = BaseGPLoss()
model = GPLoss()
seed = np.random.randint(0,100)
base_params = base_model.init(jax.random.PRNGKey(seed), x, y, t)
params = model.init(jax.random.PRNGKey(np.random.randint(seed)), x, y, t)
n_iters = st.number_input("Number of iterations", min_value=1, max_value=200, value=100)
lr = st.selectbox("Learning rate", [0.1, 0.01, 0.001, 0.0001], 1)
tx = optax.sgd(learning_rate=lr)
base_opt_state = tx.init(base_params)
opt_state = tx.init(params)
loss_grad_fn = jax.jit(jax.value_and_grad(loss))
base_losses = []
losses = []
my_bar = st.progress(0)
for i in range(n_iters):
    m = base_model
    base_loss_val, base_grads = loss_grad_fn(base_params)
    m = model
    loss_val, grads = loss_grad_fn(params)
    base_updates, base_opt_state = tx.update(base_grads, base_opt_state)
    updates, opt_state = tx.update(grads, opt_state)
    base_params = optax.apply_updates(base_params, base_updates)
    params = optax.apply_updates(params, updates)
    losses.append(loss_val)
    base_losses.append(base_loss_val)
    my_bar.progress((i+1) / n_iters)

# Plot the results and compare to the true model
fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(10, 4))
m_list = [base_model, model]
p_list = [base_params, params]
t_list = ['Homoskedastic GP', 'Heteroskedastic GP']
j_list = []
for i in range(2):
    _, (mu, var), jitter = m_list[i].apply(p_list[i], x, y, t)
    var += jitter.ravel()
    j_list.append(jitter)
    # plt.plot(t, 2 * (t > 0) - 1, "k", lw=1, label="truth")
    ax[i].plot(x, y, ".k", label="data")
    ax[i].plot(t, mu)
    ax[i].set_title(t_list[i])
    ax[i].fill_between(
        t, mu + 2 * np.sqrt(var), mu - 2 * np.sqrt(var), alpha=0.5, label="95% conf"
    )

ax[1].legend()

col = st.columns(1)[0]
with col:
    st.pyplot(fig)


col2 = st.columns(1)[0]
fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(10, 4))

idx = np.argsort(t)
ax[1].plot(t[idx], j_list[1][idx], label="learned noise")
ax[0].hlines(j_list[0], t[idx].min(), t[idx].max())
ax[0].set_xlabel('x')
ax[1].set_xlabel('x')
ax[0].set_ylabel('learned noise')
ax[1].legend()

with col2:
    st.pyplot(fig)
    
col3 = st.columns(1)[0]
fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(10, 4))

idx = np.argsort(t)
ax[0].plot(base_losses)
ax[1].plot(losses, label="loss")
ax[0].set_xlabel('iterations')
ax[0].set_ylabel('loss')
ax[1].set_xlabel('iterations')
ax[1].legend()

with col3:
    st.pyplot(fig)