Spaces:
Sleeping
Sleeping
File size: 23,098 Bytes
04f98c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
// Transform SVG PathData
// http://www.w3.org/TR/SVG/paths.html#PathDataBNF
import { a2c, annotateArcCommand, arcAt, assertNumbers, bezierAt, bezierRoot,
intersectionUnitCircleLine } from "./mathUtils";
import { SVGPathData } from "./SVGPathData";
import { SVGCommand, TransformFunction } from "./types";
export namespace SVGPathDataTransformer {
// Predefined transforming functions
// Rounds commands values
export function ROUND(roundVal = 1e13) {
assertNumbers(roundVal);
function rf(val: number) { return Math.round(val * roundVal) / roundVal; }
return function round(command: any) {
if ("undefined" !== typeof command.x1) {
command.x1 = rf(command.x1);
}
if ("undefined" !== typeof command.y1) {
command.y1 = rf(command.y1);
}
if ("undefined" !== typeof command.x2) {
command.x2 = rf(command.x2);
}
if ("undefined" !== typeof command.y2) {
command.y2 = rf(command.y2);
}
if ("undefined" !== typeof command.x) {
command.x = rf(command.x);
}
if ("undefined" !== typeof command.y) {
command.y = rf(command.y);
}
if ("undefined" !== typeof command.rX) {
command.rX = rf(command.rX);
}
if ("undefined" !== typeof command.rY) {
command.rY = rf(command.rY);
}
return command;
};
}
// Relative to absolute commands
export function TO_ABS() {
return INFO((command, prevX, prevY) => {
if (command.relative) {
// x1/y1 values
if ("undefined" !== typeof command.x1) {
command.x1 += prevX;
}
if ("undefined" !== typeof command.y1) {
command.y1 += prevY;
}
// x2/y2 values
if ("undefined" !== typeof command.x2) {
command.x2 += prevX;
}
if ("undefined" !== typeof command.y2) {
command.y2 += prevY;
}
// Finally x/y values
if ("undefined" !== typeof command.x) {
command.x += prevX;
}
if ("undefined" !== typeof command.y) {
command.y += prevY;
}
command.relative = false;
}
return command;
});
}
// Absolute to relative commands
export function TO_REL() {
return INFO((command, prevX, prevY) => {
if (!command.relative) {
// x1/y1 values
if ("undefined" !== typeof command.x1) {
command.x1 -= prevX;
}
if ("undefined" !== typeof command.y1) {
command.y1 -= prevY;
}
// x2/y2 values
if ("undefined" !== typeof command.x2) {
command.x2 -= prevX;
}
if ("undefined" !== typeof command.y2) {
command.y2 -= prevY;
}
// Finally x/y values
if ("undefined" !== typeof command.x) {
command.x -= prevX;
}
if ("undefined" !== typeof command.y) {
command.y -= prevY;
}
command.relative = true;
}
return command;
});
}
// Convert H, V, Z and A with rX = 0 to L
export function NORMALIZE_HVZ(normalizeZ = true, normalizeH = true, normalizeV = true) {
return INFO((command, prevX, prevY, pathStartX, pathStartY) => {
if (isNaN(pathStartX) && !(command.type & SVGPathData.MOVE_TO)) {
throw new Error("path must start with moveto");
}
if (normalizeH && command.type & SVGPathData.HORIZ_LINE_TO) {
command.type = SVGPathData.LINE_TO;
command.y = command.relative ? 0 : prevY;
}
if (normalizeV && command.type & SVGPathData.VERT_LINE_TO) {
command.type = SVGPathData.LINE_TO;
command.x = command.relative ? 0 : prevX;
}
if (normalizeZ && command.type & SVGPathData.CLOSE_PATH) {
command.type = SVGPathData.LINE_TO;
command.x = command.relative ? pathStartX - prevX : pathStartX;
command.y = command.relative ? pathStartY - prevY : pathStartY;
}
if (command.type & SVGPathData.ARC && (0 === command.rX || 0 === command.rY)) {
command.type = SVGPathData.LINE_TO;
delete command.rX;
delete command.rY;
delete command.xRot;
delete command.lArcFlag;
delete command.sweepFlag;
}
return command;
});
}
/*
* Transforms smooth curves and quads to normal curves and quads (SsTt to CcQq)
*/
export function NORMALIZE_ST() {
let prevCurveC2X = NaN;
let prevCurveC2Y = NaN;
let prevQuadCX = NaN;
let prevQuadCY = NaN;
return INFO((command, prevX, prevY) => {
if (command.type & SVGPathData.SMOOTH_CURVE_TO) {
command.type = SVGPathData.CURVE_TO;
prevCurveC2X = isNaN(prevCurveC2X) ? prevX : prevCurveC2X;
prevCurveC2Y = isNaN(prevCurveC2Y) ? prevY : prevCurveC2Y;
command.x1 = command.relative ? prevX - prevCurveC2X : 2 * prevX - prevCurveC2X;
command.y1 = command.relative ? prevY - prevCurveC2Y : 2 * prevY - prevCurveC2Y;
}
if (command.type & SVGPathData.CURVE_TO) {
prevCurveC2X = command.relative ? prevX + command.x2 : command.x2;
prevCurveC2Y = command.relative ? prevY + command.y2 : command.y2;
} else {
prevCurveC2X = NaN;
prevCurveC2Y = NaN;
}
if (command.type & SVGPathData.SMOOTH_QUAD_TO) {
command.type = SVGPathData.QUAD_TO;
prevQuadCX = isNaN(prevQuadCX) ? prevX : prevQuadCX;
prevQuadCY = isNaN(prevQuadCY) ? prevY : prevQuadCY;
command.x1 = command.relative ? prevX - prevQuadCX : 2 * prevX - prevQuadCX;
command.y1 = command.relative ? prevY - prevQuadCY : 2 * prevY - prevQuadCY;
}
if (command.type & SVGPathData.QUAD_TO) {
prevQuadCX = command.relative ? prevX + command.x1 : command.x1;
prevQuadCY = command.relative ? prevY + command.y1 : command.y1;
} else {
prevQuadCX = NaN;
prevQuadCY = NaN;
}
return command;
});
}
/*
* A quadratic bézier curve can be represented by a cubic bézier curve which has
* the same end points as the quadratic and both control points in place of the
* quadratic"s one.
*
* This transformer replaces QqTt commands with Cc commands respectively.
* This is useful for reading path data into a system which only has a
* representation for cubic curves.
*/
export function QT_TO_C() {
let prevQuadX1 = NaN;
let prevQuadY1 = NaN;
return INFO((command, prevX, prevY) => {
if (command.type & SVGPathData.SMOOTH_QUAD_TO) {
command.type = SVGPathData.QUAD_TO;
prevQuadX1 = isNaN(prevQuadX1) ? prevX : prevQuadX1;
prevQuadY1 = isNaN(prevQuadY1) ? prevY : prevQuadY1;
command.x1 = command.relative ? prevX - prevQuadX1 : 2 * prevX - prevQuadX1;
command.y1 = command.relative ? prevY - prevQuadY1 : 2 * prevY - prevQuadY1;
}
if (command.type & SVGPathData.QUAD_TO) {
prevQuadX1 = command.relative ? prevX + command.x1 : command.x1;
prevQuadY1 = command.relative ? prevY + command.y1 : command.y1;
const x1 = command.x1;
const y1 = command.y1;
command.type = SVGPathData.CURVE_TO;
command.x1 = ((command.relative ? 0 : prevX) + x1 * 2) / 3;
command.y1 = ((command.relative ? 0 : prevY) + y1 * 2) / 3;
command.x2 = (command.x + x1 * 2) / 3;
command.y2 = (command.y + y1 * 2) / 3;
} else {
prevQuadX1 = NaN;
prevQuadY1 = NaN;
}
return command;
});
}
export function INFO(
f: (command: any, prevXAbs: number, prevYAbs: number,
pathStartXAbs: number, pathStartYAbs: number) => any | any[]) {
let prevXAbs = 0;
let prevYAbs = 0;
let pathStartXAbs = NaN;
let pathStartYAbs = NaN;
return function transform(command: any) {
if (isNaN(pathStartXAbs) && !(command.type & SVGPathData.MOVE_TO)) {
throw new Error("path must start with moveto");
}
const result = f(command, prevXAbs, prevYAbs, pathStartXAbs, pathStartYAbs);
if (command.type & SVGPathData.CLOSE_PATH) {
prevXAbs = pathStartXAbs;
prevYAbs = pathStartYAbs;
}
if ("undefined" !== typeof command.x) {
prevXAbs = (command.relative ? prevXAbs + command.x : command.x);
}
if ("undefined" !== typeof command.y) {
prevYAbs = (command.relative ? prevYAbs + command.y : command.y);
}
if (command.type & SVGPathData.MOVE_TO) {
pathStartXAbs = prevXAbs;
pathStartYAbs = prevYAbs;
}
return result;
};
}
/*
* remove 0-length segments
*/
export function SANITIZE(EPS = 0) {
assertNumbers(EPS);
let prevCurveC2X = NaN;
let prevCurveC2Y = NaN;
let prevQuadCX = NaN;
let prevQuadCY = NaN;
return INFO((command, prevX, prevY, pathStartX, pathStartY) => {
const abs = Math.abs;
let skip = false;
let x1Rel = 0;
let y1Rel = 0;
if (command.type & SVGPathData.SMOOTH_CURVE_TO) {
x1Rel = isNaN(prevCurveC2X) ? 0 : prevX - prevCurveC2X;
y1Rel = isNaN(prevCurveC2Y) ? 0 : prevY - prevCurveC2Y;
}
if (command.type & (SVGPathData.CURVE_TO | SVGPathData.SMOOTH_CURVE_TO)) {
prevCurveC2X = command.relative ? prevX + command.x2 : command.x2;
prevCurveC2Y = command.relative ? prevY + command.y2 : command.y2;
} else {
prevCurveC2X = NaN;
prevCurveC2Y = NaN;
}
if (command.type & SVGPathData.SMOOTH_QUAD_TO) {
prevQuadCX = isNaN(prevQuadCX) ? prevX : 2 * prevX - prevQuadCX;
prevQuadCY = isNaN(prevQuadCY) ? prevY : 2 * prevY - prevQuadCY;
} else if (command.type & SVGPathData.QUAD_TO) {
prevQuadCX = command.relative ? prevX + command.x1 : command.x1;
prevQuadCY = command.relative ? prevY + command.y1 : command.y2;
} else {
prevQuadCX = NaN;
prevQuadCY = NaN;
}
if (command.type & SVGPathData.LINE_COMMANDS ||
command.type & SVGPathData.ARC && (0 === command.rX || 0 === command.rY || !command.lArcFlag) ||
command.type & SVGPathData.CURVE_TO || command.type & SVGPathData.SMOOTH_CURVE_TO ||
command.type & SVGPathData.QUAD_TO || command.type & SVGPathData.SMOOTH_QUAD_TO) {
const xRel = "undefined" === typeof command.x ? 0 :
(command.relative ? command.x : command.x - prevX);
const yRel = "undefined" === typeof command.y ? 0 :
(command.relative ? command.y : command.y - prevY);
x1Rel = !isNaN(prevQuadCX) ? prevQuadCX - prevX :
"undefined" === typeof command.x1 ? x1Rel :
command.relative ? command.x :
command.x1 - prevX;
y1Rel = !isNaN(prevQuadCY) ? prevQuadCY - prevY :
"undefined" === typeof command.y1 ? y1Rel :
command.relative ? command.y :
command.y1 - prevY;
const x2Rel = "undefined" === typeof command.x2 ? 0 :
(command.relative ? command.x : command.x2 - prevX);
const y2Rel = "undefined" === typeof command.y2 ? 0 :
(command.relative ? command.y : command.y2 - prevY);
if (abs(xRel) <= EPS && abs(yRel) <= EPS &&
abs(x1Rel) <= EPS && abs(y1Rel) <= EPS &&
abs(x2Rel) <= EPS && abs(y2Rel) <= EPS) {
skip = true;
}
}
if (command.type & SVGPathData.CLOSE_PATH) {
if (abs(prevX - pathStartX) <= EPS && abs(prevY - pathStartY) <= EPS) {
skip = true;
}
}
return skip ? [] : command;
});
}
// SVG Transforms : http://www.w3.org/TR/SVGTiny12/coords.html#TransformList
// Matrix : http://apike.ca/prog_svg_transform.html
// a c e
// b d f
export function MATRIX(a: number, b: number, c: number, d: number, e: number, f: number) {
assertNumbers(a, b, c, d, e, f);
return INFO((command, prevX, prevY, pathStartX) => {
const origX1 = command.x1;
const origX2 = command.x2;
// if isNaN(pathStartX), then this is the first command, which is ALWAYS an
// absolute MOVE_TO, regardless what the relative flag says
const comRel = command.relative && !isNaN(pathStartX);
const x = "undefined" !== typeof command.x ? command.x : (comRel ? 0 : prevX);
const y = "undefined" !== typeof command.y ? command.y : (comRel ? 0 : prevY);
if (command.type & SVGPathData.HORIZ_LINE_TO && 0 !== b) {
command.type = SVGPathData.LINE_TO;
command.y = command.relative ? 0 : prevY;
}
if (command.type & SVGPathData.VERT_LINE_TO && 0 !== c) {
command.type = SVGPathData.LINE_TO;
command.x = command.relative ? 0 : prevX;
}
if ("undefined" !== typeof command.x) {
command.x = (command.x * a) + (y * c) + (comRel ? 0 : e);
}
if ("undefined" !== typeof command.y) {
command.y = (x * b) + command.y * d + (comRel ? 0 : f);
}
if ("undefined" !== typeof command.x1) {
command.x1 = command.x1 * a + command.y1 * c + (comRel ? 0 : e);
}
if ("undefined" !== typeof command.y1) {
command.y1 = origX1 * b + command.y1 * d + (comRel ? 0 : f);
}
if ("undefined" !== typeof command.x2) {
command.x2 = command.x2 * a + command.y2 * c + (comRel ? 0 : e);
}
if ("undefined" !== typeof command.y2) {
command.y2 = origX2 * b + command.y2 * d + (comRel ? 0 : f);
}
function sqr(x: number) { return x * x; }
const det = a * d - b * c;
if ("undefined" !== typeof command.xRot) {
// Skip if this is a pure translation
if (1 !== a || 0 !== b || 0 !== c || 1 !== d) {
// Special case for singular matrix
if (0 === det) {
// In the singular case, the arc is compressed to a line. The actual geometric image of the original
// curve under this transform possibly extends beyond the starting and/or ending points of the segment, but
// for simplicity we ignore this detail and just replace this command with a single line segment.
delete command.rX;
delete command.rY;
delete command.xRot;
delete command.lArcFlag;
delete command.sweepFlag;
command.type = SVGPathData.LINE_TO;
} else {
// Convert to radians
const xRot = command.xRot * Math.PI / 180;
// Convert rotated ellipse to general conic form
// x0^2/rX^2 + y0^2/rY^2 - 1 = 0
// x0 = x*cos(xRot) + y*sin(xRot)
// y0 = -x*sin(xRot) + y*cos(xRot)
// --> A*x^2 + B*x*y + C*y^2 - 1 = 0, where
const sinRot = Math.sin(xRot);
const cosRot = Math.cos(xRot);
const xCurve = 1 / sqr(command.rX);
const yCurve = 1 / sqr(command.rY);
const A = sqr(cosRot) * xCurve + sqr(sinRot) * yCurve;
const B = 2 * sinRot * cosRot * (xCurve - yCurve);
const C = sqr(sinRot) * xCurve + sqr(cosRot) * yCurve;
// Apply matrix to A*x^2 + B*x*y + C*y^2 - 1 = 0
// x1 = a*x + c*y
// y1 = b*x + d*y
// (we can ignore e and f, since pure translations don"t affect the shape of the ellipse)
// --> A1*x1^2 + B1*x1*y1 + C1*y1^2 - det^2 = 0, where
const A1 = A * d * d - B * b * d + C * b * b;
const B1 = B * (a * d + b * c) - 2 * (A * c * d + C * a * b);
const C1 = A * c * c - B * a * c + C * a * a;
// Unapply newXRot to get back to axis-aligned ellipse equation
// x1 = x2*cos(newXRot) - y2*sin(newXRot)
// y1 = x2*sin(newXRot) + y2*cos(newXRot)
// A1*x1^2 + B1*x1*y1 + C1*y1^2 - det^2 =
// x2^2*(A1*cos(newXRot)^2 + B1*sin(newXRot)*cos(newXRot) + C1*sin(newXRot)^2)
// + x2*y2*(2*(C1 - A1)*sin(newXRot)*cos(newXRot) + B1*(cos(newXRot)^2 - sin(newXRot)^2))
// + y2^2*(A1*sin(newXRot)^2 - B1*sin(newXRot)*cos(newXRot) + C1*cos(newXRot)^2)
// (which must have the same zeroes as)
// x2^2/newRX^2 + y2^2/newRY^2 - 1
// (so we have)
// 2*(C1 - A1)*sin(newXRot)*cos(newXRot) + B1*(cos(newXRot)^2 - sin(newXRot)^2) = 0
// (A1 - C1)*sin(2*newXRot) = B1*cos(2*newXRot)
// 2*newXRot = atan2(B1, A1 - C1)
const newXRot = ((Math.atan2(B1, A1 - C1) + Math.PI) % Math.PI) / 2;
// For any integer n, (atan2(B1, A1 - C1) + n*pi)/2 is a solution to the above; incrementing n just swaps
// the x and y radii computed below (since that"s what rotating an ellipse by pi/2 does). Choosing the
// rotation between 0 and pi/2 eliminates the ambiguity and leads to more predictable output.
// Finally, we get newRX and newRY from the same-zeroes relationship that gave us newXRot
const newSinRot = Math.sin(newXRot);
const newCosRot = Math.cos(newXRot);
command.rX = Math.abs(det) /
Math.sqrt(A1 * sqr(newCosRot) + B1 * newSinRot * newCosRot + C1 * sqr(newSinRot));
command.rY = Math.abs(det) /
Math.sqrt(A1 * sqr(newSinRot) - B1 * newSinRot * newCosRot + C1 * sqr(newCosRot));
command.xRot = newXRot * 180 / Math.PI;
}
}
}
// sweepFlag needs to be inverted when mirroring shapes
// see http://www.itk.ilstu.edu/faculty/javila/SVG/SVG_drawing1/elliptical_curve.htm
// m 65,10 a 50,25 0 1 0 50,25
// M 65,60 A 50,25 0 1 1 115,35
if ("undefined" !== typeof command.sweepFlag && 0 > det) {
command.sweepFlag = +!command.sweepFlag;
}
return command;
});
}
export function ROTATE(a: number, x = 0, y = 0) {
assertNumbers(a, x, y);
const sin = Math.sin(a);
const cos = Math.cos(a);
return MATRIX(cos, sin, -sin, cos, x - x * cos + y * sin, y - x * sin - y * cos);
}
export function TRANSLATE(dX: number, dY = 0) {
assertNumbers(dX, dY);
return MATRIX(1, 0, 0, 1, dX, dY);
}
export function SCALE(dX: number, dY = dX) {
assertNumbers(dX, dY);
return MATRIX(dX, 0, 0, dY, 0, 0);
}
export function SKEW_X(a: number) {
assertNumbers(a);
return MATRIX(1, 0, Math.atan(a), 1, 0, 0);
}
export function SKEW_Y(a: number) {
assertNumbers(a);
return MATRIX(1, Math.atan(a), 0, 1, 0, 0);
}
export function X_AXIS_SYMMETRY(xOffset = 0) {
assertNumbers(xOffset);
return MATRIX(-1, 0, 0, 1, xOffset, 0);
}
export function Y_AXIS_SYMMETRY(yOffset = 0) {
assertNumbers(yOffset);
return MATRIX(1, 0, 0, -1, 0, yOffset);
}
// Convert arc commands to curve commands
export function A_TO_C() {
return INFO((command, prevX, prevY) => {
if (SVGPathData.ARC === command.type) {
return a2c(command, command.relative ? 0 : prevX, command.relative ? 0 : prevY);
}
return command;
});
}
// @see annotateArcCommand
export function ANNOTATE_ARCS() {
return INFO((c, x1, y1) => {
if (c.relative) {
x1 = 0;
y1 = 0;
}
if (SVGPathData.ARC === c.type) {
annotateArcCommand(c, x1, y1);
}
return c;
});
}
export function CLONE() {
return (c: SVGCommand) => {
const result = {} as SVGCommand;
// tslint:disable-next-line
for (const key in c) {
result[key as keyof SVGCommand] = c[key as keyof SVGCommand];
}
return result;
};
}
// @see annotateArcCommand
export function CALCULATE_BOUNDS() {
const clone = CLONE();
const toAbs = TO_ABS();
const qtToC = QT_TO_C();
const normST = NORMALIZE_ST();
const f: TransformFunction & {minX: number, maxX: number, minY: number, maxY: number} =
INFO((command, prevXAbs, prevYAbs) => {
const c = normST(qtToC(toAbs(clone(command))));
function fixX(absX: number) {
if (absX > f.maxX) { f.maxX = absX; }
if (absX < f.minX) { f.minX = absX; }
}
function fixY(absY: number) {
if (absY > f.maxY) { f.maxY = absY; }
if (absY < f.minY) { f.minY = absY; }
}
if (c.type & SVGPathData.DRAWING_COMMANDS) {
fixX(prevXAbs);
fixY(prevYAbs);
}
if (c.type & SVGPathData.HORIZ_LINE_TO) {
fixX(c.x);
}
if (c.type & SVGPathData.VERT_LINE_TO) {
fixY(c.y);
}
if (c.type & SVGPathData.LINE_TO) {
fixX(c.x);
fixY(c.y);
}
if (c.type & SVGPathData.CURVE_TO) {
// add start and end points
fixX(c.x);
fixY(c.y);
const xDerivRoots = bezierRoot(prevXAbs, c.x1, c.x2, c.x);
for (const derivRoot of xDerivRoots) {
if (0 < derivRoot && 1 > derivRoot) {
fixX(bezierAt(prevXAbs, c.x1, c.x2, c.x, derivRoot));
}
}
const yDerivRoots = bezierRoot(prevYAbs, c.y1, c.y2, c.y);
for (const derivRoot of yDerivRoots) {
if (0 < derivRoot && 1 > derivRoot) {
fixY(bezierAt(prevYAbs, c.y1, c.y2, c.y, derivRoot));
}
}
}
if (c.type & SVGPathData.ARC) {
// add start and end points
fixX(c.x);
fixY(c.y);
annotateArcCommand(c, prevXAbs, prevYAbs);
// p = cos(phi) * xv + sin(phi) * yv
// dp = -sin(phi) * xv + cos(phi) * yv = 0
const xRotRad = c.xRot / 180 * Math.PI;
// points on ellipse for phi = 0° and phi = 90°
const x0 = Math.cos(xRotRad) * c.rX;
const y0 = Math.sin(xRotRad) * c.rX;
const x90 = -Math.sin(xRotRad) * c.rY;
const y90 = Math.cos(xRotRad) * c.rY;
// annotateArcCommand returns phi1 and phi2 such that -180° < phi1 < 180° and phi2 is smaller or greater
// depending on the sweep flag. Calculate phiMin, phiMax such that -180° < phiMin < 180° and phiMin < phiMax
const [phiMin, phiMax] = c.phi1 < c.phi2 ?
[c.phi1, c.phi2] :
(-180 > c.phi2 ? [c.phi2 + 360, c.phi1 + 360] : [c.phi2, c.phi1]);
const normalizeXiEta = ([xi, eta]: [number, number]) => {
const phiRad = Math.atan2(eta, xi);
const phi = phiRad * 180 / Math.PI;
return phi < phiMin ? phi + 360 : phi;
};
// xi = cos(phi), eta = sin(phi)
const xDerivRoots = intersectionUnitCircleLine(x90, -x0, 0).map(normalizeXiEta);
for (const derivRoot of xDerivRoots) {
if (derivRoot > phiMin && derivRoot < phiMax) {
fixX(arcAt(c.cX, x0, x90, derivRoot));
}
}
const yDerivRoots = intersectionUnitCircleLine(y90, -y0, 0).map(normalizeXiEta);
for (const derivRoot of yDerivRoots) {
if (derivRoot > phiMin && derivRoot < phiMax) {
fixY(arcAt(c.cY, y0, y90, derivRoot));
}
}
}
return command;
}) as any;
f.minX = Infinity;
f.maxX = -Infinity;
f.minY = Infinity;
f.maxY = -Infinity;
return f;
}
}
|