Spaces:
Sleeping
Sleeping
| import { SVGPathData } from "./SVGPathData"; | |
| import { CommandA, CommandC } from "./types"; | |
| export function rotate([x, y]: [number, number], rad: number) { | |
| return [ | |
| x * Math.cos(rad) - y * Math.sin(rad), | |
| x * Math.sin(rad) + y * Math.cos(rad), | |
| ]; | |
| } | |
| const DEBUG_CHECK_NUMBERS = true; | |
| export function assertNumbers(...numbers: number[]) { | |
| if (DEBUG_CHECK_NUMBERS) { | |
| for (let i = 0; i < numbers.length; i++) { | |
| if ("number" !== typeof numbers[i]) { | |
| throw new Error( | |
| `assertNumbers arguments[${i}] is not a number. ${typeof numbers[i]} == typeof ${numbers[i]}`); | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| const PI = Math.PI; | |
| /** | |
| * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes | |
| * Fixes rX and rY. | |
| * Ensures lArcFlag and sweepFlag are 0 or 1 | |
| * Adds center coordinates: command.cX, command.cY (relative or absolute, depending on command.relative) | |
| * Adds start and end arc parameters (in degrees): command.phi1, command.phi2; phi1 < phi2 iff. c.sweepFlag == true | |
| */ | |
| export function annotateArcCommand(c: CommandA, x1: number, y1: number) { | |
| c.lArcFlag = (0 === c.lArcFlag) ? 0 : 1; | |
| c.sweepFlag = (0 === c.sweepFlag) ? 0 : 1; | |
| // tslint:disable-next-line | |
| let {rX, rY, x, y} = c; | |
| rX = Math.abs(c.rX); | |
| rY = Math.abs(c.rY); | |
| const [x1_, y1_] = rotate([(x1 - x) / 2, (y1 - y) / 2], -c.xRot / 180 * PI); | |
| const testValue = Math.pow(x1_, 2) / Math.pow(rX, 2) + Math.pow(y1_, 2) / Math.pow(rY, 2); | |
| if (1 < testValue) { | |
| rX *= Math.sqrt(testValue); | |
| rY *= Math.sqrt(testValue); | |
| } | |
| c.rX = rX; | |
| c.rY = rY; | |
| const c_ScaleTemp = (Math.pow(rX, 2) * Math.pow(y1_, 2) + Math.pow(rY, 2) * Math.pow(x1_, 2)); | |
| const c_Scale = (c.lArcFlag !== c.sweepFlag ? 1 : -1) * | |
| Math.sqrt(Math.max(0, (Math.pow(rX, 2) * Math.pow(rY, 2) - c_ScaleTemp) / c_ScaleTemp)); | |
| const cx_ = rX * y1_ / rY * c_Scale; | |
| const cy_ = -rY * x1_ / rX * c_Scale; | |
| const cRot = rotate([cx_, cy_], c.xRot / 180 * PI); | |
| c.cX = cRot[0] + (x1 + x) / 2; | |
| c.cY = cRot[1] + (y1 + y) / 2; | |
| c.phi1 = Math.atan2((y1_ - cy_) / rY, (x1_ - cx_) / rX); | |
| c.phi2 = Math.atan2((-y1_ - cy_) / rY, (-x1_ - cx_) / rX); | |
| if (0 === c.sweepFlag && c.phi2 > c.phi1) { | |
| c.phi2 -= 2 * PI; | |
| } | |
| if (1 === c.sweepFlag && c.phi2 < c.phi1) { | |
| c.phi2 += 2 * PI; | |
| } | |
| c.phi1 *= 180 / PI; | |
| c.phi2 *= 180 / PI; | |
| } | |
| /** | |
| * Solves a quadratic system of equations of the form | |
| * a * x + b * y = c | |
| * x² + y² = 1 | |
| * This can be understood as the intersection of the unit circle with a line. | |
| * => y = (c - a x) / b | |
| * => x² + (c - a x)² / b² = 1 | |
| * => x² b² + c² - 2 c a x + a² x² = b² | |
| * => (a² + b²) x² - 2 a c x + (c² - b²) = 0 | |
| */ | |
| export function intersectionUnitCircleLine(a: number, b: number, c: number): [number, number][] { | |
| assertNumbers(a, b, c); | |
| // cf. pqFormula | |
| const termSqr = a * a + b * b - c * c; | |
| if (0 > termSqr) { | |
| return []; | |
| } else if (0 === termSqr) { | |
| return [ | |
| [ | |
| (a * c) / (a * a + b * b), | |
| (b * c) / (a * a + b * b)]]; | |
| } | |
| const term = Math.sqrt(termSqr); | |
| return [ | |
| [ | |
| (a * c + b * term) / (a * a + b * b), | |
| (b * c - a * term) / (a * a + b * b)], | |
| [ | |
| (a * c - b * term) / (a * a + b * b), | |
| (b * c + a * term) / (a * a + b * b)]]; | |
| } | |
| export const DEG = Math.PI / 180; | |
| export function lerp(a: number, b: number, t: number) { | |
| return (1 - t) * a + t * b; | |
| } | |
| export function arcAt(c: number, x1: number, x2: number, phiDeg: number) { | |
| return c + Math.cos(phiDeg / 180 * PI) * x1 + Math.sin(phiDeg / 180 * PI) * x2; | |
| } | |
| export function bezierRoot(x0: number, x1: number, x2: number, x3: number) { | |
| const EPS = 1e-6; | |
| const x01 = x1 - x0; | |
| const x12 = x2 - x1; | |
| const x23 = x3 - x2; | |
| const a = 3 * x01 + 3 * x23 - 6 * x12; | |
| const b = (x12 - x01) * 6; | |
| const c = 3 * x01; | |
| // solve a * t² + b * t + c = 0 | |
| if (Math.abs(a) < EPS) { | |
| // equivalent to b * t + c => | |
| return [-c / b]; | |
| } | |
| return pqFormula(b / a, c / a, EPS); | |
| } | |
| export function bezierAt(x0: number, x1: number, x2: number, x3: number, t: number) { | |
| // console.log(x0, y0, x1, y1, x2, y2, x3, y3, t) | |
| const s = 1 - t; | |
| const c0 = s * s * s; | |
| const c1 = 3 * s * s * t; | |
| const c2 = 3 * s * t * t; | |
| const c3 = t * t * t; | |
| return x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3; | |
| } | |
| function pqFormula(p: number, q: number, PRECISION = 1e-6) { | |
| // 4 times the discriminant:in | |
| const discriminantX4 = p * p / 4 - q; | |
| if (discriminantX4 < -PRECISION) { | |
| return []; | |
| } else if (discriminantX4 <= PRECISION) { | |
| return [-p / 2]; | |
| } | |
| const root = Math.sqrt(discriminantX4); | |
| return [-(p / 2) - root, -(p / 2) + root]; | |
| } | |
| export function a2c(arc: CommandA, x0: number, y0: number): CommandC[] { | |
| if (!arc.cX) { | |
| annotateArcCommand(arc, x0, y0); | |
| } | |
| const phiMin = Math.min(arc.phi1!, arc.phi2!), phiMax = Math.max(arc.phi1!, arc.phi2!), deltaPhi = phiMax - phiMin; | |
| const partCount = Math.ceil(deltaPhi / 90 ); | |
| const result: CommandC[] = new Array(partCount); | |
| let prevX = x0, prevY = y0; | |
| for (let i = 0; i < partCount; i++) { | |
| const phiStart = lerp(arc.phi1!, arc.phi2!, i / partCount); | |
| const phiEnd = lerp(arc.phi1!, arc.phi2!, (i + 1) / partCount); | |
| const deltaPhi = phiEnd - phiStart; | |
| const f = 4 / 3 * Math.tan(deltaPhi * DEG / 4); | |
| // x1/y1, x2/y2 and x/y coordinates on the unit circle for phiStart/phiEnd | |
| const [x1, y1] = [ | |
| Math.cos(phiStart * DEG) - f * Math.sin(phiStart * DEG), | |
| Math.sin(phiStart * DEG) + f * Math.cos(phiStart * DEG)]; | |
| const [x, y] = [Math.cos(phiEnd * DEG), Math.sin(phiEnd * DEG)]; | |
| const [x2, y2] = [x + f * Math.sin(phiEnd * DEG), y - f * Math.cos(phiEnd * DEG)]; | |
| result[i] = {relative: arc.relative, type: SVGPathData.CURVE_TO } as any; | |
| const transform = (x: number, y: number) => { | |
| const [xTemp, yTemp] = rotate([x * arc.rX, y * arc.rY], arc.xRot); | |
| return [arc.cX! + xTemp, arc.cY! + yTemp]; | |
| }; | |
| [result[i].x1, result[i].y1] = transform(x1, y1); | |
| [result[i].x2, result[i].y2] = transform(x2, y2); | |
| [result[i].x, result[i].y] = transform(x, y); | |
| if (arc.relative) { | |
| result[i].x1 -= prevX; | |
| result[i].y1 -= prevY; | |
| result[i].x2 -= prevX; | |
| result[i].y2 -= prevY; | |
| result[i].x -= prevX; | |
| result[i].y -= prevY; | |
| } | |
| [prevX, prevY] = [result[i].x, result[i].y]; | |
| } | |
| return result; | |
| } | |