File size: 14,071 Bytes
0e3e3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
components.py
=============
Architectural components for SmolLM2-135M implementation

Components:
- RMSNorm: Root Mean Square Layer Normalization
- RotaryEmbedding: Rotary Position Embeddings (RoPE)
- GroupedQueryAttention: Grouped Query Attention (9 Q heads, 3 KV heads)
- SwiGLU_FFN: SwiGLU Feed-Forward Network
- TransformerBlock: Complete transformer block with pre-norm architecture
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import math


class RMSNorm(nn.Module):
    """
    Root Mean Square Layer Normalization
    
    Simpler and faster than LayerNorm:
    - No mean centering
    - No bias term
    - 10-15% faster than LayerNorm
    
    Formula: output = input * rsqrt(mean(input²) + eps) * weight
    """
    
    def __init__(self, hidden_size, eps=1e-5):
        """
        Args:
            hidden_size (int): Dimension of the input
            eps (float): Small constant for numerical stability
        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(hidden_size))
    
    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape [batch, seq_len, hidden_size]
            
        Returns:
            torch.Tensor: Normalized tensor of same shape as input
        """
        # Calculate variance (mean of squares)
        variance = x.pow(2).mean(-1, keepdim=True)
        
        # Normalize: x / sqrt(variance + eps)
        x = x * torch.rsqrt(variance + self.eps)
        
        # Scale by learned weight
        return self.weight * x


class RotaryEmbedding(nn.Module):
    """
    Rotary Position Embedding (RoPE)
    
    Encodes position by rotating Q and K vectors in 2D subspaces.
    Enables relative position encoding and extrapolation to longer sequences.
    
    Key properties:
    - Applied only to Q and K, not V
    - Different rotation frequencies for different dimension pairs
    - Enables length extrapolation beyond training sequences
    """
    
    def __init__(self, dim, max_position_embeddings=2048, base=10000.0):
        """
        Args:
            dim (int): Dimension of each attention head (typically hidden_size / num_heads)
            max_position_embeddings (int): Maximum sequence length
            base (float): Base for inverse frequency calculation (theta)
        """
        super().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        
        # Calculate inverse frequencies for rotation
        # inv_freq[i] = 1 / (base^(2i/dim)) for i in [0, dim/2)
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        
    def forward(self, x, position_ids):
        """
        Args:
            x (torch.Tensor): Input tensor (used for device/dtype)
            position_ids (torch.Tensor): Position indices [batch, seq_len] or [seq_len]
            
        Returns:
            tuple: (cos, sin) embeddings of shape [batch, seq_len, dim]
        """
        # Ensure position_ids has batch dimension
        if position_ids.dim() == 1:
            position_ids = position_ids.unsqueeze(0)
        
        # Calculate rotation angles: position_ids × inv_freq
        # Shape: [batch, seq_len, dim/2]
        freqs = torch.einsum('bi,j->bij', position_ids.float(), self.inv_freq)
        
        # Duplicate frequencies for both sin and cos
        # Shape: [batch, seq_len, dim]
        emb = torch.cat((freqs, freqs), dim=-1)
        
        # Return cos and sin, preserving input dtype
        return emb.cos().to(x.dtype), emb.sin().to(x.dtype)


def rotate_half(x):
    """
    Rotate half the hidden dimensions
    
    For RoPE, we rotate pairs of dimensions. This function rearranges
    the tensor to prepare for rotation.
    
    Args:
        x (torch.Tensor): Input of shape [..., dim]
        
    Returns:
        torch.Tensor: Rotated tensor where second half is negated and moved to first
    """
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin):
    """
    Apply rotary position embeddings to queries and keys
    
    Rotation formula:
    q_rotated = q * cos + rotate_half(q) * sin
    k_rotated = k * cos + rotate_half(k) * sin
    
    Args:
        q (torch.Tensor): Query tensor [batch, num_heads, seq_len, head_dim]
        k (torch.Tensor): Key tensor [batch, num_heads, seq_len, head_dim]
        cos (torch.Tensor): Cosine embeddings [batch, seq_len, head_dim]
        sin (torch.Tensor): Sine embeddings [batch, seq_len, head_dim]
        
    Returns:
        tuple: (q_rotated, k_rotated) with rotary embeddings applied
    """
    # Add dimensions for broadcasting
    # cos/sin: [batch, seq_len, dim] -> [batch, 1, seq_len, dim]
    if cos.dim() == 2:
        cos = cos.unsqueeze(0)
        sin = sin.unsqueeze(0)
    if cos.dim() == 3:
        cos = cos.unsqueeze(1)
        sin = sin.unsqueeze(1)
    
    # Apply rotation
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    
    return q_embed, k_embed


class GroupedQueryAttention(nn.Module):
    """
    Grouped Query Attention (GQA)
    
    Memory-efficient attention where multiple query heads share KV heads.
    SmolLM2-135M uses 9 query heads and 3 KV heads (3:1 ratio).
    
    Benefits:
    - Reduces KV cache memory by 66% vs full MHA
    - Maintains most of multi-head attention's expressiveness
    - Used in Llama 2, Mistral, and other modern LLMs
    
    Architecture:
    - 9 query heads (each head_dim=64)
    - 3 KV heads (each head_dim=64)
    - Each KV head is repeated 3 times to serve 3 query heads
    """
    
    def __init__(self, config):
        """
        Args:
            config: Model configuration with attributes:
                - hidden_size: Model dimension (576)
                - num_attention_heads: Number of query heads (9)
                - num_key_value_heads: Number of KV heads (3)
                - max_position_embeddings: Max sequence length
                - rope_theta: RoPE base frequency
        """
        super().__init__()
        self.hidden_size = config.hidden_size  # 576
        self.num_heads = config.num_attention_heads  # 9
        self.num_kv_heads = config.num_key_value_heads  # 3
        self.num_kv_groups = self.num_heads // self.num_kv_heads  # 3
        self.head_dim = self.hidden_size // self.num_heads  # 64
        
        assert self.hidden_size % self.num_heads == 0, "hidden_size must be divisible by num_heads"
        assert self.num_heads % self.num_kv_heads == 0, "num_heads must be divisible by num_kv_heads"
        
        # Projections (no bias in any linear layers)
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        
        # Rotary embeddings
        self.rotary_emb = RotaryEmbedding(
            self.head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta
        )
    
    def forward(self, hidden_states, attention_mask=None, position_ids=None):
        """
        Forward pass of grouped query attention
        
        Args:
            hidden_states (torch.Tensor): Input [batch, seq_len, hidden_size]
            attention_mask (torch.Tensor, optional): Attention mask
            position_ids (torch.Tensor, optional): Position indices
            
        Returns:
            torch.Tensor: Output [batch, seq_len, hidden_size]
        """
        batch_size, seq_len, _ = hidden_states.size()
        
        # Create position IDs if not provided
        if position_ids is None:
            position_ids = torch.arange(seq_len, device=hidden_states.device)
        
        # Q, K, V projections
        query_states = self.q_proj(hidden_states)  # [batch, seq_len, 576]
        key_states = self.k_proj(hidden_states)    # [batch, seq_len, 192]
        value_states = self.v_proj(hidden_states)  # [batch, seq_len, 192]
        
        # Reshape to separate heads
        # Q: [batch, seq_len, 9, 64] -> [batch, 9, seq_len, 64]
        query_states = query_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        # K, V: [batch, seq_len, 3, 64] -> [batch, 3, seq_len, 64]
        key_states = key_states.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
        
        # Apply RoPE to Q and K
        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
        
        # Repeat K and V for GQA (3 KV heads -> 9 to match Q heads)
        # Each KV head is repeated 3 times: [batch, 3, seq, 64] -> [batch, 9, seq, 64]
        key_states = key_states.repeat_interleave(self.num_kv_groups, dim=1)
        value_states = value_states.repeat_interleave(self.num_kv_groups, dim=1)
        
        # Scaled dot-product attention (PyTorch 2.0+ optimized)
        # Equivalent to ~80% of Flash Attention performance
        attn_output = F.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=0.0,
            is_causal=True  # Causal masking for autoregressive generation
        )
        
        # Reshape back: [batch, 9, seq_len, 64] -> [batch, seq_len, 576]
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(batch_size, seq_len, self.hidden_size)
        
        # Output projection
        attn_output = self.o_proj(attn_output)
        
        return attn_output


class SwiGLU_FFN(nn.Module):
    """
    SwiGLU Feed-Forward Network
    
    Uses Swish-Gated Linear Units instead of standard FFN.
    Formula: FFN(x) = down_proj(SiLU(gate_proj(x)) ⊙ up_proj(x))
    
    Key differences from standard FFN:
    - 3 linear projections instead of 2 (gate, up, down)
    - Element-wise gating mechanism (⊙)
    - 50% more parameters but better performance
    - Used in Llama, PaLM, and most modern LLMs
    """
    
    def __init__(self, config):
        """
        Args:
            config: Model configuration with attributes:
                - hidden_size: Model dimension (576)
                - intermediate_size: FFN intermediate dimension (1536)
        """
        super().__init__()
        self.hidden_size = config.hidden_size  # 576
        self.intermediate_size = config.intermediate_size  # 1536
        
        # Three projections (no bias)
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        
        # Swish/SiLU activation
        self.act_fn = nn.SiLU()
    
    def forward(self, x):
        """
        Forward pass: down(SiLU(gate) * up)
        
        Args:
            x (torch.Tensor): Input [batch, seq_len, hidden_size]
            
        Returns:
            torch.Tensor: Output [batch, seq_len, hidden_size]
        """
        # Gate path: apply SiLU activation
        gate = self.act_fn(self.gate_proj(x))
        
        # Up path: linear transformation
        up = self.up_proj(x)
        
        # Element-wise multiplication (gating)
        gated = gate * up
        
        # Down projection
        return self.down_proj(gated)


class TransformerBlock(nn.Module):
    """
    Complete Transformer Block with Pre-Norm Architecture
    
    Architecture:
    1. x -> RMSNorm -> Attention -> Add residual
    2. x -> RMSNorm -> FFN -> Add residual
    
    Pre-norm (norm before sublayer) is standard in modern transformers
    as it provides better gradient flow in deep networks.
    """
    
    def __init__(self, config):
        """
        Args:
            config: Model configuration
        """
        super().__init__()
        
        # Layer normalization (pre-norm)
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        # Self-attention
        self.self_attn = GroupedQueryAttention(config)
        
        # Post-attention layer norm
        self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        # Feed-forward network
        self.mlp = SwiGLU_FFN(config)
    
    def forward(self, hidden_states, attention_mask=None, position_ids=None):
        """
        Forward pass through transformer block
        
        Args:
            hidden_states (torch.Tensor): Input [batch, seq_len, hidden_size]
            attention_mask (torch.Tensor, optional): Attention mask
            position_ids (torch.Tensor, optional): Position indices
            
        Returns:
            torch.Tensor: Output [batch, seq_len, hidden_size]
        """
        # Self-attention with residual connection
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(hidden_states, attention_mask, position_ids)
        hidden_states = residual + hidden_states
        
        # FFN with residual connection
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        
        return hidden_states