Spaces:
Sleeping
Sleeping
File size: 3,570 Bytes
0531f23 5c5cb4d 2f94119 5c5cb4d 2f94119 3e7998b 2f94119 0531f23 5c5cb4d 0531f23 5c5cb4d 0531f23 5c5cb4d 0531f23 5c5cb4d 0531f23 5c5cb4d 3e7998b 0531f23 e87a45f 3e7998b 0531f23 5c5cb4d 0531f23 5c5cb4d f09d15a 3e7998b 5c5cb4d 0531f23 3e7998b 5c5cb4d 3e7998b 0531f23 e87a45f 5c5cb4d 8a4e70b 0531f23 5c5cb4d cf28e8a 8a4e70b f09d15a cf28e8a 3e7998b 5c5cb4d cf28e8a 0531f23 e87a45f 3e7998b 2f94119 3e7998b 5c5cb4d 0531f23 5c5cb4d 3e7998b 5c5cb4d f09d15a 2f94119 e87a45f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import re
import gradio as gr
import sympy as sp
from sympy.parsing.sympy_parser import (
parse_expr, standard_transformations,
implicit_multiplication_application, convert_xor
)
TITLE = "LanguageBridge — Math Fast Agent (SymPy)"
# ---- 僅做安全正規化:全形→半形、^→**、√→sqrt ----
def normalize_ascii(s: str) -> str:
table = str.maketrans({
"(":"(", ")":")", ",":",", ";":";", ":":":",
"=":"=", "-":"-", "+":"+", "*":"*", "/":"/", "。":".",
"×":"*", "√":"sqrt"
})
return s.translate(table)
def preprocess(expr: str) -> str:
s = (expr or "").strip()
s = normalize_ascii(s)
s = s.replace("^", "**") # 2^3 -> 2**3
# ⛔ 不再自動補 *,避免把 sin(x) 變成 sin*(x)
return s
# SymPy 解析:啟用隱式乘法與 ^ 號處理
TRANS = standard_transformations + (implicit_multiplication_application, convert_xor)
def to_sympy_expr(s: str):
return parse_expr(preprocess(s), transformations=TRANS)
def to_sympy_eq(s: str):
s = preprocess(s)
if "=" not in s:
raise ValueError("等式缺少 '='")
L, R = s.split("=", 1)
return sp.Eq(parse_expr(L, transformations=TRANS),
parse_expr(R, transformations=TRANS))
def solve_math(q: str):
q = (q or "").strip()
if not q:
return "請輸入算式或方程,例如:3x+7=1;sin(x)^2+cos(x)^2;factor(x^4-1)"
try:
# 多行 / 分號;分隔
parts = [s.strip() for seg in q.split(";") for s in seg.split("\n")]
parts = [p for p in parts if p]
# 任何一行有 '=' → 解(可聯立)
if any("=" in p for p in parts):
eqs, syms = [], set()
for s in parts:
if "=" in s:
e = to_sympy_eq(s)
eqs.append(e)
syms |= e.free_symbols | getattr(e, "rhs", sp.Integer(0)).free_symbols
if not syms:
syms = {sp.symbols("x")}
sol = sp.solve(eqs, list(syms), dict=True)
if not sol:
return "無解或需要更多條件。"
return "\n".join(
f"解 {i}: " + ", ".join([f"{k} = {sp.simplify(v)}" for k, v in d.items()])
for i, d in enumerate(sol, 1)
)
# 否則:一般表達式(簡化/因式/微分/積分)
expr = to_sympy_expr(q)
out = []
try: out.append(f"簡化:{sp.simplify(expr)}")
except Exception: out.append(f"簡化:{expr}")
try:
fact = sp.factor(expr)
if fact != expr: out.append(f"因式分解:{fact}")
except Exception: pass
try:
x = next(iter(expr.free_symbols)) if expr.free_symbols else sp.symbols("x")
out.append(f"對 {x} 微分:{sp.diff(expr, x)}")
out.append(f"對 {x} 積分:{sp.integrate(expr, x)}")
except Exception: pass
return "\n".join(out) if out else f"結果:{expr}"
except Exception as e:
return f"解析失敗:{e}"
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(
"## " + TITLE + "\\n"
"貼上算式(可多行 / 分號 `;` 分隔)。支援隱式乘法(例:`3x`, `2(x+1)`, `(x+1)(x-1)`, `2sqrt(x)`)與 `^`。"
)
q = gr.Textbox(lines=6, label="題目 / 算式(可含聯立方程)")
out = gr.Textbox(lines=12, label="輸出")
gr.Button("送出 🚀").click(fn=solve_math, inputs=q, outputs=out)
if __name__ == "__main__":
demo.launch()
|