File size: 4,287 Bytes
8a4e70b
2f94119
 
 
8a4e70b
 
 
 
 
 
 
2f94119
8a4e70b
 
 
 
 
 
2f94119
8a4e70b
 
2f94119
 
8a4e70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f94119
8a4e70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f94119
8a4e70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f94119
8a4e70b
 
 
 
 
 
 
2f94119
 
8a4e70b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

import gradio as gr
import sympy as sp

def default_symbols():
    names = ["x","y","z","t","theta","a","b","c","n","m"]
    d = {name: sp.symbols(name, real=True) for name in names}
    d["pi"] = sp.pi
    d["e"]  = sp.E
    d["sqrt"] = sp.sqrt
    return d

def parse_constraints(parts, syms):
    cons = []
    for p in parts:
        s = p.strip()
        if not s:
            continue
        try:
            rel = sp.sympify(s, locals=syms)
            cons.append(rel)
        except Exception:
            pass
    return cons

def solve_line(txt):
    syms = default_symbols()

    # constraints after comma: "eq, 0 <= theta < 2*pi"
    if "," in txt:
        main = txt.split(",", 1)[0].strip()
        cons = parse_constraints(txt.split(",")[1:].copy(), syms)
    else:
        main = txt.strip()
        cons = []

    if not main:
        return "Empty input."

    if "=" in main:
        left, right = main.split("=", 1)
        try:
            eq = sp.Eq(sp.sympify(left, locals=syms), sp.sympify(right, locals=syms))
        except Exception as e:
            return f"Parse equation failed: {e}"

        vars_set = set(eq.free_symbols)
        if not vars_set:
            vars_set = {sp.symbols("x", real=True)}
        vars_list = list(vars_set)

        # try solveset on first var with simple real-domain extraction
        if cons:
            v = vars_list[0]
            domain = sp.S.Reals
            try:
                # If constraints form an And of relationals, keep as boolean condition.
                cond = cons[0]
                for c in cons[1:]:
                    cond = sp.And(cond, c)
                # best-effort: do not over-process; pass domain=Reals
                sol = sp.solveset(eq, v, domain=domain)
                return f"solveset({v} in Reals): {sp.simplify(sol)}"
            except Exception:
                pass

        try:
            sols = sp.solve([eq], vars_list, dict=True)
            if not sols:
                return "No solution or need more conditions."
            lines = []
            for i, s in enumerate(sols, 1):
                parts = []
                for k, v in s.items():
                    parts.append(f"{k} = {sp.simplify(v)}")
                lines.append("Solution " + str(i) + ": " + ", ".join(parts))
            return "\n".join(lines)
        except Exception as e:
            return f"Solve failed: {e}"

    # pure expression branch
    try:
        expr = sp.sympify(main, locals=syms)
    except Exception as e:
        return f"Parse failed: {e}"

    out = []
    try:
        out.append("Simplify: " + str(sp.simplify(expr)))
    except Exception:
        pass
    try:
        fact = sp.factor(expr)
        if fact != expr:
            out.append("Factor: " + str(fact))
    except Exception:
        pass
    try:
        v = list(expr.free_symbols)[0] if expr.free_symbols else sp.symbols("x", real=True)
        out.append("d/d" + str(v) + ": " + str(sp.diff(expr, v)))
        out.append("Integral d" + str(v) + ": " + str(sp.integrate(expr, v)))
    except Exception:
        pass

    if out:
        return "\n".join(out)
    return "Result: " + str(expr)

def solve_math(q):
    q = (q or "").strip()
    if not q:
        return "Enter expression(s) or equation(s). Use semicolons or newlines to separate.\nExamples:\n 2*x + 5 = 11\n sin(theta) = sqrt(3)/2, 0 <= theta < 2*pi\n factor(x**4 - 1)"
    segs = []
    for line in q.splitlines():
        segs.extend([p for p in line.split(";")])
    segs = [s.strip() for s in segs if s.strip()]
    outputs = []
    for s in segs:
        outputs.append(">>> " + s + "\n" + solve_line(s))
    return "\n\n".join(outputs)

with gr.Blocks(title="LanguageBridge — Math Fast Agent (SymPy)") as demo:
    gr.Markdown("# LanguageBridge — Math Fast Agent (SymPy)")
    gr.Markdown("Paste expressions or equations. Add constraints after a comma. Examples:\n- 2*x + 5 = 11\n- sin(theta) = sqrt(3)/2, 0 <= theta < 2*pi\n- factor(x**4 - 1)")
    q = gr.Textbox(lines=6, label="Problem / Expression (semicolon or newline for systems)")
    out = gr.Textbox(lines=12, label="Output")
    btn = gr.Button("Solve")
    btn.click(fn=solve_math, inputs=q, outputs=out)

if __name__ == "__main__":
    demo.launch(share=True)