Spaces:
Sleeping
Sleeping
File size: 4,273 Bytes
5c5cb4d 2f94119 5c5cb4d 2f94119 3e7998b 2f94119 5c5cb4d 3e7998b 5c5cb4d 3e7998b 5c5cb4d f09d15a 3e7998b 5c5cb4d 3e7998b 5c5cb4d 3e7998b 5c5cb4d 8a4e70b 5c5cb4d 2f94119 5c5cb4d 3e7998b 5c5cb4d 8a4e70b f09d15a 5c5cb4d 3e7998b 5c5cb4d 3e7998b 5c5cb4d 3e7998b 2f94119 5c5cb4d 3e7998b 5c5cb4d 3e7998b 5c5cb4d f09d15a 2f94119 5c5cb4d f09d15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import re
import gradio as gr
import sympy as sp
from sympy.parsing.sympy_parser import (
parse_expr, standard_transformations,
implicit_multiplication_application, convert_xor
)
TITLE = "LanguageBridge — Math Fast Agent (SymPy)"
# ---------- 輸入正規化:隱式乘法 / ^→** / 全形→半形 / √→sqrt ----------
def normalize_ascii(s: str) -> str:
table = str.maketrans({
'(':'(', ')':')', ',':',', ';':';', ':':':',
'=':'=', '-':'-', '+':'+', '*':'*', '/':'/', '。':'.',
'×':'*', '√':'sqrt'
})
return s.translate(table)
def auto_insert_stars(s: str) -> str:
# 3x -> 3*x; x(x+1) -> x*(x+1);(x+1)x -> (x+1)*x; 2sqrt(x) -> 2*sqrt(x)
s = re.sub(r'(\d)([A-Za-z])', r'\1*\2', s)
s = re.sub(r'([A-Za-z0-9_])\(', r'\1*(', s)
s = re.sub(r'\)([A-Za-z0-9_])', r')*\1', s)
s = re.sub(r'(\d)\s*sqrt', r'\1*sqrt', s)
return s
def preprocess(expr: str) -> str:
s = (expr or "").strip()
s = normalize_ascii(s)
s = s.replace("^", "**") # 2^3 -> 2**3
s = auto_insert_stars(s) # 隱式乘法 → 顯式
return s
# 支援隱式乘法與 ^ 解析
TRANS = standard_transformations + (implicit_multiplication_application, convert_xor)
def to_sympy_expr(s: str):
s = preprocess(s)
return parse_expr(s, transformations=TRANS)
def to_sympy_eq(s: str):
s = preprocess(s)
if "=" not in s:
raise ValueError("等式缺少 '='")
L, R = s.split("=", 1)
return sp.Eq(parse_expr(L, transformations=TRANS),
parse_expr(R, transformations=TRANS))
# ---------------- 主邏輯(保留原介面與輸出格式) ----------------
def solve_math(q: str):
q = (q or "").strip()
if not q:
return "請輸入算式或方程,例如:2x+3=11;sin(x)^2 + cos(x)^2;factor(x^2-9)"
try:
# 多題/聯立:分號 ; 或換行 \n 分隔
parts = [s.strip() for seg in q.split(";") for s in seg.split("\n")]
parts = [p for p in parts if p]
# 若任一行含 '=',啟用「解方程(可聯立)」模式
if any("=" in p for p in parts):
eqs, syms = [], set()
for s in parts:
if "=" in s:
e = to_sympy_eq(s)
eqs.append(e)
syms |= e.free_symbols | e.rhs.free_symbols
if not syms:
syms = {sp.symbols("x")}
sol = sp.solve(eqs, list(syms), dict=True)
if not sol:
return "無解或需要更多條件。"
return "\n".join(
f"解 {i}: " + ", ".join([f\"{k} = {sp.simplify(v)}\" for k, v in d.items()])
for i, d in enumerate(sol, 1)
)
# 否則視為單一表達式:簡化 / 因式 / 微分 / 積分
expr = to_sympy_expr(q)
out = []
try:
out.append(f"簡化:{sp.simplify(expr)}")
except Exception:
out.append(f"簡化:{expr}")
try:
fact = sp.factor(expr)
if fact != expr:
out.append(f"因式分解:{fact}")
except Exception:
pass
try:
x = next(iter(expr.free_symbols)) if expr.free_symbols else sp.symbols("x")
out.append(f"對 {x} 微分:{sp.diff(expr, x)}")
out.append(f"對 {x} 積分:{sp.integrate(expr, x)}")
except Exception:
pass
return "\n".join(out) if out else f"結果:{expr}"
except Exception as e:
return f"解析失敗:{e}"
# ---------------- 介面 ----------------
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(
"## " + TITLE + "\\n"
"貼上算式(可多行 / 用分號 `;` 分隔)。\\n\\n"
"**可直接輸入隱式乘法:** `3x`、`2(x+1)`、`(x)(x+1)`、`2sqrt(x)`;"
"也可用 `x^2`(自動轉為 `x**2`),`√(x)`(自動轉為 `sqrt(x)`)。"
)
q = gr.Textbox(lines=6, label="題目 / 算式(可含聯立方程)")
out = gr.Textbox(lines=12, label="輸出")
gr.Button("送出 🚀").click(fn=solve_math, inputs=q, outputs=out)
if __name__ == "__main__":
# Space 環境不需要 share
demo.launch()
|