Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import numpy as np | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| def load_dataset(n=100, w = 0.4, b=5., x_range = [0, 50]): | |
| np.random.seed(42) | |
| def s(x): | |
| g = (x - x_range[0]) / (x_range[1] - x_range[0]) | |
| return 5 * (0.25 + g**2.) | |
| x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] | |
| eps = np.random.randn(n) * s(x) | |
| y = (w * x * (1. + np.sin(x)/5) + b) + eps | |
| y = (y - y.mean()) / y.std() | |
| idx = np.argsort(x) | |
| return pd.DataFrame({"x": x[idx], "y": y[idx]}) | |
| def check_sanitize_data(inp): | |
| try: | |
| inp=inp.astype(float) | |
| except: | |
| return None, [("Data points not numeric", "Error")] | |
| x,y = inp["x"].to_numpy(), inp["y"].to_numpy() | |
| if(len(x)<2): | |
| return None, [("Data points not provided", "Error")] | |
| return (x,y), [("", "OK")] | |
| def plot_data(inp, m=None, b=None): | |
| xy, status = check_sanitize_data(inp) | |
| if xy is None: | |
| return None, status | |
| x, y = xy | |
| fig,ax = plt.subplots() | |
| ax.set(aspect=np.std(x).item()/3, ylabel="Y-axis") | |
| ax.plot(x, y, "o", label="Original data", markersize=2) | |
| # center text | |
| # fig.text(.5, .05, "OLS", ha="center") | |
| if(m): | |
| y_hat = m * x + b | |
| rss = np.sum((y-y_hat)**2) | |
| ax.set(xlabel = f"RSS:{rss:.4f}") | |
| ax.xaxis.label.set(color="red") | |
| ax.plot(x, m * x + b, "r", label="Fitted line") | |
| ax.legend() | |
| ax.grid() | |
| fig.tight_layout() | |
| return fig, [("Data check", "OK")] | |
| def linear_regression_from_scratch(X,y): | |
| XT_X = np.matmul(X.T, X) | |
| XT_y = np.matmul(X.T, y) | |
| m,b = np.matmul(np.linalg.inv(XT_X), XT_y) | |
| return m,b | |
| def linear_regression_linalg_lstsq(X,y): | |
| (m,b),*_ = np.linalg.lstsq(X, y, rcond=None) | |
| return m,b | |
| def linear_regression_plot(method, inp): | |
| xy, status = check_sanitize_data(inp) | |
| if xy is None: | |
| return None, status | |
| x,y = xy | |
| X = np.column_stack((x, np.ones(len(x)))) | |
| if method == "numpy from scratch": | |
| m, b = linear_regression_from_scratch(X, y) | |
| elif method == "numpy.linalg.lstsq": | |
| m, b = linear_regression_linalg_lstsq(X, y) | |
| else: | |
| return None, [("Method not selected", "Error")] | |
| fig, _ = plot_data(inp, m, b) | |
| return fig, [("Regression", "OK")] | |
| data = load_dataset() | |
| block_params = { | |
| "title": "Ordinary Least Squares", | |
| "css": """ | |
| #XY {max-height: 350px; overflow-y: scroll} | |
| #images img {width:auto; height:auto} | |
| #images .flex {display:none; height:auto} | |
| #accord > div > span {font-weight: bold} | |
| """ | |
| } | |
| plot_data(data) | |
| with gr.Blocks(**block_params) as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| data_frm = gr.Dataframe(headers=data.columns.tolist(), | |
| datatype=["number", "number"], | |
| col_count=(2, "fixed"), elem_id="XY" | |
| ) | |
| plot_btn = gr.Button("Check&Plot") | |
| gr.Examples([[data.values.tolist()]], inputs=data_frm) | |
| gr.Markdown(""" | |
| #### How to use? | |
| 1.Fill the x-y table below (or use the example data provided) | |
| 2.**Check&Plot** | |
| 3.Select an implementation | |
| 4.**Regression&Plot** | |
| """) | |
| with gr.Column(scale=1): | |
| status_hlt = gr.HighlightedText( | |
| label="Status", | |
| combine_adjacent=True, | |
| ).style(color_map={"Error": "red", "OK": "green"}) | |
| data_plt = gr.Plot(label="Plot") | |
| method_dd = gr.Dropdown(label="Select an implementation",choices=["numpy from scratch", "numpy.linalg.lstsq"],) | |
| regression_btn = gr.Button("Regression&Plot") | |
| # gr.Examples(label="Proofs", examples=[["img.png"]],inputs=img) | |
| with gr.Accordion("Motivation", open=False, elem_id="accord"): | |
| gr.Markdown(""" | |
| In this space, I tried to get most out of Gradio an HF. So that this combination can be | |
| used not only for advanced ML models but also to demonstrate the topics regarding | |
| mathematical background of ML. The first topic is Linear Regression optimized with OLS | |
| """) | |
| with gr.Accordion("Model Card", open=False, elem_id="accord"): | |
| gr.Markdown(""" | |
| | Name | Objective | Metric | Solution | | |
| | -------- | ------- | -------- | -------- | | |
| | Linear regression | Ord. least squares (OLS) | Residual sum-of-squares (RSS) | Analytical | | |
| """) | |
| with gr.Accordion("Math Background", open=False, elem_id="accord"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown(""" | |
| We have a linear regression model in (1). | |
| We want to minimize RSS (2). | |
| We need the derivative of RSS(β) with respect to β to and set it zero. | |
| The resulting formula is given (3). | |
| An example matrix represenation of the model y = Xβ is given (4). | |
| """) | |
| with gr.Column(scale=1): | |
| img = gr.Image(label="Proof", value="img.png", elem_id="images") | |
| with gr.Accordion("References", open=False, elem_id="accord"): | |
| links = ("statproofbook.github.io/P/mlr-ols", | |
| "statproofbook.github.io/P/mlr-ols2", | |
| "towardsdatascience.com/building-linear-regression-least-squares-with-linear-algebra-2adf071dd5dd") | |
| gr.Markdown("\n".join(f"{i}.[https://{l}](https://{l}) " for i, l in enumerate(links,1))) | |
| plot_btn.click(fn=plot_data, inputs=data_frm, outputs=[data_plt,status_hlt]) | |
| regression_btn.click(fn=linear_regression_plot, inputs=[method_dd,data_frm], outputs=[data_plt,status_hlt]) | |
| demo.launch() | |