Spaces:
Runtime error
Runtime error
harishaseebat92
commited on
Commit
·
b5dbacc
1
Parent(s):
067e2f3
EM: IBM QPU Integration
Browse files- .gitignore +3 -0
- Dockerfile +4 -0
- em/simulation.py +196 -6
- em/state.py +13 -0
- em/ui.py +43 -3
- requirements.txt +1 -0
- utils/base_functions.py +0 -443
- utils/base_ionq.py +0 -458
- utils/delta_impulse_generator.py +0 -493
.gitignore
CHANGED
|
@@ -9,3 +9,6 @@ __pycache__/
|
|
| 9 |
*.pyd
|
| 10 |
.Python
|
| 11 |
*.so
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
*.pyd
|
| 10 |
.Python
|
| 11 |
*.so
|
| 12 |
+
|
| 13 |
+
# Virtual Environments
|
| 14 |
+
**/aqc_venv/
|
Dockerfile
CHANGED
|
@@ -49,6 +49,10 @@ RUN python3 -m pip install --upgrade pip setuptools wheel \
|
|
| 49 |
COPY --chown=user:user . .
|
| 50 |
COPY docker/nginx.conf /etc/nginx/nginx.conf
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# Prepare writable directories for nginx (running as non-root later)
|
| 53 |
RUN mkdir -p /tmp/nginx/body /tmp/nginx/proxy /tmp/nginx/fastcgi /tmp/nginx/uwsgi /tmp/nginx/scgi \
|
| 54 |
&& touch /tmp/nginx.access.log /tmp/nginx.error.log \
|
|
|
|
| 49 |
COPY --chown=user:user . .
|
| 50 |
COPY docker/nginx.conf /etc/nginx/nginx.conf
|
| 51 |
|
| 52 |
+
# 7. Install the local adapt-aqc package
|
| 53 |
+
# We do this after copying the files so the source code is available
|
| 54 |
+
RUN python3 -m pip install ./utils/adapt-aqc
|
| 55 |
+
|
| 56 |
# Prepare writable directories for nginx (running as non-root later)
|
| 57 |
RUN mkdir -p /tmp/nginx/body /tmp/nginx/proxy /tmp/nginx/fastcgi /tmp/nginx/uwsgi /tmp/nginx/scgi \
|
| 58 |
&& touch /tmp/nginx.access.log /tmp/nginx.error.log \
|
em/simulation.py
CHANGED
|
@@ -4,9 +4,10 @@ EM Embedded - Simulation Module
|
|
| 4 |
Contains simulation logic including run_simulation_only, reset_to_defaults,
|
| 5 |
and stop handlers.
|
| 6 |
"""
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
-
from .state import state, ctrl, _apply_workflow_highlights, is_statevector_estimator_selected
|
| 10 |
from .globals import (
|
| 11 |
plotter, simulation_data, current_mesh, snapshot_times,
|
| 12 |
stop_simulation, qpu_ts_cache, sim_ts_cache, set_stop_simulation, reset_globals
|
|
@@ -356,6 +357,7 @@ def run_simulation_only():
|
|
| 356 |
return qutils.run_sve(
|
| 357 |
field_type,
|
| 358 |
positions,
|
|
|
|
| 359 |
None,
|
| 360 |
total_time,
|
| 361 |
snapshot_dt,
|
|
@@ -420,16 +422,204 @@ def run_simulation_only():
|
|
| 420 |
pass
|
| 421 |
return
|
| 422 |
|
| 423 |
-
# IBM QPU
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
state.status_type = "warning"
|
| 428 |
state.show_progress = False
|
| 429 |
state.is_running = False
|
| 430 |
state.run_button_text = "RUN!"
|
| 431 |
state.stop_button_disabled = True
|
| 432 |
-
log_to_console("
|
| 433 |
try:
|
| 434 |
ctrl.view_update()
|
| 435 |
except Exception:
|
|
|
|
| 4 |
Contains simulation logic including run_simulation_only, reset_to_defaults,
|
| 5 |
and stop handlers.
|
| 6 |
"""
|
| 7 |
+
import re
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
+
from .state import state, ctrl, _apply_workflow_highlights, is_statevector_estimator_selected, is_ibm_qpu_selected
|
| 11 |
from .globals import (
|
| 12 |
plotter, simulation_data, current_mesh, snapshot_times,
|
| 13 |
stop_simulation, qpu_ts_cache, sim_ts_cache, set_stop_simulation, reset_globals
|
|
|
|
| 357 |
return qutils.run_sve(
|
| 358 |
field_type,
|
| 359 |
positions,
|
| 360 |
+
|
| 361 |
None,
|
| 362 |
total_time,
|
| 363 |
snapshot_dt,
|
|
|
|
| 422 |
pass
|
| 423 |
return
|
| 424 |
|
| 425 |
+
# IBM QPU branch
|
| 426 |
+
ibm_qpu_selected = is_ibm_qpu_selected()
|
| 427 |
+
if ibm_qpu_selected:
|
| 428 |
+
try:
|
| 429 |
+
log_to_console("Running IBM QPU simulation...")
|
| 430 |
+
state.status_message = "Running IBM QPU simulation..."
|
| 431 |
+
state.simulation_progress = 5
|
| 432 |
+
state.qpu_ts_ready = False
|
| 433 |
+
state.qpu_plot_style = "display: none; width: 900px; height: 660px; margin: 0 auto;"
|
| 434 |
+
state.qpu_ts_other_ready = False
|
| 435 |
+
state.qpu_other_plot_style = "display: none; width: 900px; height: 660px; margin: 0 auto;"
|
| 436 |
+
|
| 437 |
+
# Import IBM QPU backend
|
| 438 |
+
try:
|
| 439 |
+
from quantum.utils.EBU_Quantum.no_body.base_functions import get_field_values as ibm_get_field_values, create_time_frames as ibm_create_time_frames
|
| 440 |
+
except ModuleNotFoundError:
|
| 441 |
+
from utils.EBU_Quantum.no_body.base_functions import get_field_values as ibm_get_field_values, create_time_frames as ibm_create_time_frames
|
| 442 |
+
|
| 443 |
+
# Inputs for IBM QPU (single field, single position only!)
|
| 444 |
+
snapshot_dt = float(state.dt_user)
|
| 445 |
+
ix_imp, iy_imp = nearest_node_index(float(state.impulse_x), float(state.impulse_y), nx)
|
| 446 |
+
impulse_pos = (ix_imp, iy_imp)
|
| 447 |
+
|
| 448 |
+
# Get field and single position from UI
|
| 449 |
+
# IBM QPU only supports one field and one position!
|
| 450 |
+
field_type = (state.qpu_field_components or "Ez").strip()
|
| 451 |
+
if field_type == "All":
|
| 452 |
+
field_type = "Ez" # Default to Ez if 'All' selected (not supported by IBM QPU)
|
| 453 |
+
log_to_console("Warning: IBM QPU only supports single field. Defaulting to Ez.")
|
| 454 |
+
|
| 455 |
+
# Parse single monitor position
|
| 456 |
+
pts_str = str(state.qpu_monitor_gridpoints or "").strip()
|
| 457 |
+
raw_pts = [tuple(map(int, m)) for m in re.findall(r"\((\d+)\s*,\s*(\d+)\)", pts_str)]
|
| 458 |
+
if not raw_pts:
|
| 459 |
+
# Default to impulse position
|
| 460 |
+
monitor_x, monitor_y = impulse_pos
|
| 461 |
+
log_to_console(f"No monitor position specified. Using impulse position ({monitor_x}, {monitor_y}).")
|
| 462 |
+
else:
|
| 463 |
+
# Use only the first position (IBM QPU restriction)
|
| 464 |
+
monitor_x, monitor_y = raw_pts[0]
|
| 465 |
+
if len(raw_pts) > 1:
|
| 466 |
+
log_to_console(f"Warning: IBM QPU only supports single position. Using first: ({monitor_x}, {monitor_y})")
|
| 467 |
+
|
| 468 |
+
state.status_message = "Step 1: Circuit Construction & Optimization (0-40%)..."
|
| 469 |
+
state.simulation_progress = 10
|
| 470 |
+
|
| 471 |
+
def _ibm_progress_callback(pct):
|
| 472 |
+
state.simulation_progress = int(pct)
|
| 473 |
+
# Update status message based on progress stage
|
| 474 |
+
if pct < 40:
|
| 475 |
+
state.status_message = f"Step 1: Circuit Construction & Optimization ({int(pct)}%)"
|
| 476 |
+
elif pct < 90:
|
| 477 |
+
state.status_message = f"Step 2: Circuit Execution ({int(pct)}%)"
|
| 478 |
+
else:
|
| 479 |
+
state.status_message = f"Step 3: Result Processing ({int(pct)}%)"
|
| 480 |
+
|
| 481 |
+
# Call the IBM QPU get_field_values function
|
| 482 |
+
field_values = ibm_get_field_values(
|
| 483 |
+
field=field_type,
|
| 484 |
+
x=monitor_x,
|
| 485 |
+
y=monitor_y,
|
| 486 |
+
T=float(T),
|
| 487 |
+
snapshot_time=snapshot_dt,
|
| 488 |
+
nx=nx,
|
| 489 |
+
impulse_pos=impulse_pos,
|
| 490 |
+
shots=10000,
|
| 491 |
+
pm_optimization_level=2,
|
| 492 |
+
simulation="False",
|
| 493 |
+
optimization="False",
|
| 494 |
+
platform="IBM",
|
| 495 |
+
progress_callback=_ibm_progress_callback,
|
| 496 |
+
print_callback=log_to_console,
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
# Build time frames to match the output
|
| 500 |
+
times = ibm_create_time_frames(float(T), snapshot_dt)
|
| 501 |
+
|
| 502 |
+
# Build Plotly figure for the single time series
|
| 503 |
+
import plotly.graph_objects as go
|
| 504 |
+
fig = go.Figure()
|
| 505 |
+
|
| 506 |
+
# Determine grid dimensions for label
|
| 507 |
+
if field_type == 'Ez':
|
| 508 |
+
gw, gh = nx, nx
|
| 509 |
+
elif field_type == 'Hx':
|
| 510 |
+
gw, gh = nx, nx - 1
|
| 511 |
+
else:
|
| 512 |
+
gw, gh = nx - 1, nx
|
| 513 |
+
|
| 514 |
+
from .utils import normalized_position_label
|
| 515 |
+
label = normalized_position_label(monitor_x, monitor_y, gw, gh)
|
| 516 |
+
|
| 517 |
+
# Color based on field type
|
| 518 |
+
if field_type == 'Ez':
|
| 519 |
+
color = "#d32f2f" # Red
|
| 520 |
+
elif field_type == 'Hx':
|
| 521 |
+
color = "#388e3c" # Green
|
| 522 |
+
else:
|
| 523 |
+
color = "#1976d2" # Blue
|
| 524 |
+
|
| 525 |
+
fig.add_trace(
|
| 526 |
+
go.Scatter(
|
| 527 |
+
x=list(times),
|
| 528 |
+
y=[float(v) for v in field_values],
|
| 529 |
+
mode='lines+markers',
|
| 530 |
+
name=f"{field_type} @ {label}",
|
| 531 |
+
line=dict(color=color, width=2.5),
|
| 532 |
+
marker=dict(size=7, symbol="circle", color=color),
|
| 533 |
+
hovertemplate=f"{field_type} | t=%{{x:.3f}}s<br>Value=%{{y:.6g}}<extra>{label}</extra>",
|
| 534 |
+
)
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
max_abs = max((abs(float(v)) for v in field_values), default=1.0)
|
| 538 |
+
pad = 0.12 * max_abs if max_abs > 0 else 0.1
|
| 539 |
+
|
| 540 |
+
fig.update_layout(
|
| 541 |
+
title=f"IBM QPU Time Series - {field_type} @ {label}",
|
| 542 |
+
height=660, width=900,
|
| 543 |
+
margin=dict(l=50, r=30, t=50, b=50),
|
| 544 |
+
hovermode="x unified",
|
| 545 |
+
legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1, title_text=""),
|
| 546 |
+
paper_bgcolor="#FFFFFF",
|
| 547 |
+
plot_bgcolor="#FFFFFF",
|
| 548 |
+
)
|
| 549 |
+
fig.update_xaxes(title_text="Time (s)", title_font=dict(size=22), tickfont=dict(size=16), showgrid=True, gridcolor="rgba(0,0,0,.06)")
|
| 550 |
+
fig.update_yaxes(title_text="Field Value", title_font=dict(size=22), tickfont=dict(size=16), showgrid=True, gridcolor="rgba(0,0,0,.06)")
|
| 551 |
+
fig.update_yaxes(range=[-max_abs - pad, max_abs + pad])
|
| 552 |
+
|
| 553 |
+
# Cache the figure for export
|
| 554 |
+
qpu_ts_cache["fig"] = fig
|
| 555 |
+
qpu_ts_cache["times"] = list(times)
|
| 556 |
+
qpu_ts_cache["series_map"] = {(field_type, monitor_x, monitor_y): list(field_values)}
|
| 557 |
+
qpu_ts_cache["field"] = field_type
|
| 558 |
+
qpu_ts_cache["unique_fields"] = [field_type]
|
| 559 |
+
|
| 560 |
+
try:
|
| 561 |
+
ctrl.qpu_ts_update(fig)
|
| 562 |
+
except Exception:
|
| 563 |
+
pass
|
| 564 |
+
|
| 565 |
+
state.simulation_has_run = True
|
| 566 |
+
state.run_button_text = "Successful!"
|
| 567 |
+
state.simulation_progress = 100
|
| 568 |
+
state.status_message = "IBM QPU simulation completed successfully!"
|
| 569 |
+
log_to_console("IBM QPU run completed")
|
| 570 |
+
state.status_type = "success"
|
| 571 |
+
state.show_progress = False
|
| 572 |
+
|
| 573 |
+
ready = bool(field_values) and len(field_values) > 0
|
| 574 |
+
state.qpu_ts_ready = ready
|
| 575 |
+
state.qpu_plot_style = (
|
| 576 |
+
"width: 900px; height: 660px; margin: 0 auto;"
|
| 577 |
+
if ready else "display: none; width: 900px; height: 660px; margin: 0 auto;"
|
| 578 |
+
)
|
| 579 |
+
state.qpu_ts_other_ready = False
|
| 580 |
+
state.qpu_other_plot_style = "display: none; width: 900px; height: 660px; margin: 0 auto;"
|
| 581 |
+
|
| 582 |
+
# Set filter options for single result
|
| 583 |
+
state.qpu_plot_field_options = ["All", field_type]
|
| 584 |
+
state.qpu_plot_filter = "All"
|
| 585 |
+
state.qpu_plot_position_options = ["All positions", label]
|
| 586 |
+
state.qpu_plot_position_filter = "All positions"
|
| 587 |
+
|
| 588 |
+
if not ready:
|
| 589 |
+
state.error_message = "No IBM QPU time series generated. Check Δt, T, nx, and monitor position."
|
| 590 |
+
state.status_message = "Warning: No IBM QPU time series generated."
|
| 591 |
+
state.status_type = "warning"
|
| 592 |
+
log_to_console("IBM QPU complete.")
|
| 593 |
+
|
| 594 |
+
except Exception as e:
|
| 595 |
+
import traceback
|
| 596 |
+
state.error_message = f"IBM QPU run failed: {e}"
|
| 597 |
+
state.status_message = f"IBM QPU Error: {e}"
|
| 598 |
+
state.status_type = "error"
|
| 599 |
+
state.show_progress = False
|
| 600 |
+
state.run_button_text = "RUN!"
|
| 601 |
+
state.qpu_ts_ready = False
|
| 602 |
+
log_to_console(f"IBM QPU error: {e}")
|
| 603 |
+
log_to_console(traceback.format_exc())
|
| 604 |
+
finally:
|
| 605 |
+
state.is_running = False
|
| 606 |
+
state.stop_button_disabled = True
|
| 607 |
+
try:
|
| 608 |
+
ctrl.view_update()
|
| 609 |
+
except Exception:
|
| 610 |
+
pass
|
| 611 |
+
return
|
| 612 |
+
|
| 613 |
+
# IonQ QPU placeholder branch (not yet implemented)
|
| 614 |
+
if state.backend_type == "QPU" and state.selected_qpu == "IonQ QPU":
|
| 615 |
+
state.error_message = "IonQ QPU backend is not yet available in this build. Please select IBM QPU or the Statevector Estimator."
|
| 616 |
+
state.status_message = "IonQ QPU backend unavailable."
|
| 617 |
state.status_type = "warning"
|
| 618 |
state.show_progress = False
|
| 619 |
state.is_running = False
|
| 620 |
state.run_button_text = "RUN!"
|
| 621 |
state.stop_button_disabled = True
|
| 622 |
+
log_to_console("IonQ QPU backend not connected. Use IBM QPU or Statevector Estimator instead.")
|
| 623 |
try:
|
| 624 |
ctrl.view_update()
|
| 625 |
except Exception:
|
em/state.py
CHANGED
|
@@ -11,6 +11,7 @@ __all__ = [
|
|
| 11 |
"enable_point_picking_on_plotter",
|
| 12 |
"_apply_workflow_highlights", "_determine_workflow_step",
|
| 13 |
"is_statevector_estimator_selected",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
|
|
@@ -266,6 +267,8 @@ def _init_state_defaults():
|
|
| 266 |
"qpu_plot_field_options": ["All"],
|
| 267 |
"qpu_plot_position_filter": "All positions",
|
| 268 |
"qpu_plot_position_options": ["All positions"],
|
|
|
|
|
|
|
| 269 |
# Additional QPU monitor slots
|
| 270 |
"qpu_monitor_count": 0,
|
| 271 |
"qpu_field_components_2": "Ez",
|
|
@@ -348,5 +351,15 @@ def is_statevector_estimator_selected() -> bool:
|
|
| 348 |
return False
|
| 349 |
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
# Initialize state defaults at module load time
|
| 352 |
_init_state_defaults()
|
|
|
|
| 11 |
"enable_point_picking_on_plotter",
|
| 12 |
"_apply_workflow_highlights", "_determine_workflow_step",
|
| 13 |
"is_statevector_estimator_selected",
|
| 14 |
+
"is_ibm_qpu_selected",
|
| 15 |
]
|
| 16 |
|
| 17 |
|
|
|
|
| 267 |
"qpu_plot_field_options": ["All"],
|
| 268 |
"qpu_plot_position_filter": "All positions",
|
| 269 |
"qpu_plot_position_options": ["All positions"],
|
| 270 |
+
# IBM QPU specific options (single field only - no "All")
|
| 271 |
+
"ibm_qpu_field_options": ["Ez", "Hx", "Hy"],
|
| 272 |
# Additional QPU monitor slots
|
| 273 |
"qpu_monitor_count": 0,
|
| 274 |
"qpu_field_components_2": "Ez",
|
|
|
|
| 351 |
return False
|
| 352 |
|
| 353 |
|
| 354 |
+
def is_ibm_qpu_selected() -> bool:
|
| 355 |
+
"""Return True when the QPU dropdown targets the IBM QPU."""
|
| 356 |
+
try:
|
| 357 |
+
if state.backend_type != "QPU":
|
| 358 |
+
return False
|
| 359 |
+
return (state.selected_qpu or "").strip().lower() == "ibm qpu"
|
| 360 |
+
except AttributeError:
|
| 361 |
+
return False
|
| 362 |
+
|
| 363 |
+
|
| 364 |
# Initialize state defaults at module load time
|
| 365 |
_init_state_defaults()
|
em/ui.py
CHANGED
|
@@ -353,7 +353,7 @@ def _build_meshing_card():
|
|
| 353 |
density="compact",
|
| 354 |
color="primary",
|
| 355 |
):
|
| 356 |
-
vuetify3.Template(v_slot_thumb_label="{ modelValue }", children=["{{ modelValue === null ? 'Select' : [16, 32, 64, 128, 256, 512][modelValue] }}"])
|
| 357 |
# Hover content: enlarged Plotly graph
|
| 358 |
with vuetify3.VSheet(classes="pa-2", elevation=6, rounded=True, style="width: 644px;"):
|
| 359 |
qubit_fig_widget = plotly_widgets.Figure(
|
|
@@ -414,8 +414,48 @@ def _build_output_preferences_card():
|
|
| 414 |
vuetify3.VTextField(v_bind="props", v_model=("dt_user", 0.1), label="Δt", type="number", step="0.1", density="compact", color="primary", classes="mt-1")
|
| 415 |
vuetify3.VAlert(v_if="temporal_warning", type="warning", variant="tonal", density="compact", children=["{{ temporal_warning }}"], classes="mt-1")
|
| 416 |
|
| 417 |
-
# QPU monitor options
|
| 418 |
-
with vuetify3.VContainer(v_if="backend_type === 'QPU'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
with vuetify3.VRow(dense=True, classes="mb-1 align-center"):
|
| 420 |
with vuetify3.VCol(cols=4, sm=3, md=3):
|
| 421 |
vuetify3.VSelect(
|
|
|
|
| 353 |
density="compact",
|
| 354 |
color="primary",
|
| 355 |
):
|
| 356 |
+
vuetify3.Template(v_slot_thumb_label="{ modelValue }", children=["{{ modelValue === null ? 'Select' : [8, 16, 32, 64, 128, 256, 512][modelValue] }}"])
|
| 357 |
# Hover content: enlarged Plotly graph
|
| 358 |
with vuetify3.VSheet(classes="pa-2", elevation=6, rounded=True, style="width: 644px;"):
|
| 359 |
qubit_fig_widget = plotly_widgets.Figure(
|
|
|
|
| 414 |
vuetify3.VTextField(v_bind="props", v_model=("dt_user", 0.1), label="Δt", type="number", step="0.1", density="compact", color="primary", classes="mt-1")
|
| 415 |
vuetify3.VAlert(v_if="temporal_warning", type="warning", variant="tonal", density="compact", children=["{{ temporal_warning }}"], classes="mt-1")
|
| 416 |
|
| 417 |
+
# IBM QPU monitor options (single field, single position ONLY)
|
| 418 |
+
with vuetify3.VContainer(v_if="backend_type === 'QPU' && selected_qpu === 'IBM QPU'", classes="pa-0 mt-2"):
|
| 419 |
+
vuetify3.VAlert(
|
| 420 |
+
type="info",
|
| 421 |
+
variant="tonal",
|
| 422 |
+
density="compact",
|
| 423 |
+
children=["IBM QPU: Only ONE field component and ONE monitor position supported."],
|
| 424 |
+
classes="mb-2",
|
| 425 |
+
)
|
| 426 |
+
with vuetify3.VRow(dense=True, classes="mb-1 align-center"):
|
| 427 |
+
with vuetify3.VCol(cols=4, sm=3, md=3):
|
| 428 |
+
vuetify3.VSelect(
|
| 429 |
+
label="Field",
|
| 430 |
+
v_model=("qpu_field_components", "Ez"),
|
| 431 |
+
items=("ibm_qpu_field_options", ["Ez", "Hx", "Hy"]),
|
| 432 |
+
density="compact",
|
| 433 |
+
color="primary",
|
| 434 |
+
hide_details=True,
|
| 435 |
+
style="max-width: 160px;",
|
| 436 |
+
)
|
| 437 |
+
with vuetify3.VCol(cols=8, sm=9, md=9):
|
| 438 |
+
vuetify3.VTextField(
|
| 439 |
+
label="Monitor position (x, y) in [0,1]",
|
| 440 |
+
v_model=("qpu_monitor_samples", "(0.5, 0.5)"),
|
| 441 |
+
density="compact",
|
| 442 |
+
color="primary",
|
| 443 |
+
hide_details=True,
|
| 444 |
+
style="max-width: 320px;",
|
| 445 |
+
hint="Single position only for IBM QPU",
|
| 446 |
+
)
|
| 447 |
+
vuetify3.VAlert(
|
| 448 |
+
v_if="qpu_monitor_sample_info",
|
| 449 |
+
type="info",
|
| 450 |
+
variant="tonal",
|
| 451 |
+
density="compact",
|
| 452 |
+
children=["{{ qpu_monitor_sample_info }}"],
|
| 453 |
+
classes="mb-1",
|
| 454 |
+
style="white-space: pre-line;",
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
# Statevector Estimator monitor options (supports multiple fields and positions)
|
| 458 |
+
with vuetify3.VContainer(v_if="backend_type === 'Simulator' && selected_simulator === 'Statevector Estimator'", classes="pa-0 mt-2"):
|
| 459 |
with vuetify3.VRow(dense=True, classes="mb-1 align-center"):
|
| 460 |
with vuetify3.VCol(cols=4, sm=3, md=3):
|
| 461 |
vuetify3.VSelect(
|
requirements.txt
CHANGED
|
@@ -37,6 +37,7 @@ trame_plotly
|
|
| 37 |
Pillow==10.4.0
|
| 38 |
packaging==25.0
|
| 39 |
python-dateutil==2.9.0.post0
|
|
|
|
| 40 |
|
| 41 |
# Export utilities
|
| 42 |
imageio
|
|
|
|
| 37 |
Pillow==10.4.0
|
| 38 |
packaging==25.0
|
| 39 |
python-dateutil==2.9.0.post0
|
| 40 |
+
pathlib
|
| 41 |
|
| 42 |
# Export utilities
|
| 43 |
imageio
|
utils/base_functions.py
DELETED
|
@@ -1,443 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import scipy.sparse as sp
|
| 3 |
-
import math
|
| 4 |
-
import random
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
from scipy.special import jn
|
| 7 |
-
from scipy.sparse import identity, csr_matrix, kron, diags, eye
|
| 8 |
-
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
| 9 |
-
from qiskit.circuit.library import MCXGate, MCPhaseGate, RXGate, CRXGate, QFTGate, StatePreparation, PauliEvolutionGate, RZGate
|
| 10 |
-
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator, Pauli
|
| 11 |
-
from scipy.linalg import expm
|
| 12 |
-
# from tools import *
|
| 13 |
-
from qiskit.qasm3 import dumps # QASM 3 exporter
|
| 14 |
-
from qiskit.qasm3 import loads
|
| 15 |
-
from qiskit.circuit.library import QFT
|
| 16 |
-
from qiskit.primitives import StatevectorEstimator
|
| 17 |
-
from qiskit import transpile
|
| 18 |
-
from qiskit_addon_aqc_tensor.simulation import tensornetwork_from_circuit, apply_circuit_to_state, compute_overlap
|
| 19 |
-
from qiskit_aer import AerSimulator
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
simulator_settings = AerSimulator(
|
| 23 |
-
method="matrix_product_state",
|
| 24 |
-
matrix_product_state_max_bond_dimension=100,
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
def Wj(j, theta, lam, name='Wj', xgate=False):
|
| 28 |
-
if not xgate:
|
| 29 |
-
name = f' $W_{j}$ '
|
| 30 |
-
qc=QuantumCircuit(j, name=name)
|
| 31 |
-
|
| 32 |
-
if j > 1:
|
| 33 |
-
qc.cx(j-1, range(j-1))
|
| 34 |
-
if lam != 0:
|
| 35 |
-
qc.p(lam, j-1)
|
| 36 |
-
qc.h(j-1)
|
| 37 |
-
if xgate:
|
| 38 |
-
qc.x(range(j-1))
|
| 39 |
-
|
| 40 |
-
# the multicontrolled rz gate
|
| 41 |
-
# it will be decomposed in qiskit
|
| 42 |
-
if j > 1:
|
| 43 |
-
qc.mcrz(theta, range(j-1), j-1)
|
| 44 |
-
else:
|
| 45 |
-
qc.rz(theta, j-1)
|
| 46 |
-
|
| 47 |
-
if xgate:
|
| 48 |
-
qc.x(range(j-1))
|
| 49 |
-
qc.h(j-1)
|
| 50 |
-
if lam != 0:
|
| 51 |
-
qc.p(-lam, j-1)
|
| 52 |
-
if j > 1:
|
| 53 |
-
qc.cx(j-1, range(j-1))
|
| 54 |
-
|
| 55 |
-
return qc
|
| 56 |
-
|
| 57 |
-
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
|
| 58 |
-
if not xgate:
|
| 59 |
-
name = f' $W_{j}_block$ '
|
| 60 |
-
qc=QuantumCircuit(n + j, name=name)
|
| 61 |
-
|
| 62 |
-
if j > 1:
|
| 63 |
-
qc.cx(n + j-1, range(n, n+j-1))
|
| 64 |
-
if lam != 0:
|
| 65 |
-
qc.p(lam, n + j -1)
|
| 66 |
-
qc.h(n + j -1)
|
| 67 |
-
|
| 68 |
-
if xgate and j>1:
|
| 69 |
-
if isinstance(xgate, (list, tuple)): # selective application
|
| 70 |
-
for idx, flag in enumerate(xgate):
|
| 71 |
-
if flag: # only apply where flag == 1
|
| 72 |
-
qc.x(n + idx)
|
| 73 |
-
elif xgate is True: # apply to all
|
| 74 |
-
qc.x(range(n, n+j-1))
|
| 75 |
-
|
| 76 |
-
# the multicontrolled rz gate
|
| 77 |
-
# it will be decomposed in qiskit
|
| 78 |
-
if j > 1:
|
| 79 |
-
mcrz = RZGate(theta).control(len(ctrl_state) + j-1, ctrl_state = "1"*(j-1)+ctrl_state)
|
| 80 |
-
qc.append(mcrz, range(0, n + j))
|
| 81 |
-
else:
|
| 82 |
-
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state = ctrl_state)
|
| 83 |
-
qc.append(mcrz, range(0, n+j))
|
| 84 |
-
|
| 85 |
-
if xgate and j>1:
|
| 86 |
-
if isinstance(xgate, (list, tuple)): # selective application
|
| 87 |
-
for idx, flag in enumerate(xgate):
|
| 88 |
-
if flag: # only apply where flag == 1
|
| 89 |
-
qc.x(n + idx)
|
| 90 |
-
elif xgate is True: # apply to all
|
| 91 |
-
qc.x(range(n, n+j-1))
|
| 92 |
-
|
| 93 |
-
qc.h(n+ j-1)
|
| 94 |
-
if lam != 0:
|
| 95 |
-
qc.p(-lam, n + j-1)
|
| 96 |
-
if j > 1:
|
| 97 |
-
qc.cx(n + j-1, range(n, n +j-1))
|
| 98 |
-
|
| 99 |
-
return qc.to_gate(label=name)
|
| 100 |
-
|
| 101 |
-
def V1(nx, dt, name = "V1"):
|
| 102 |
-
n = int(np.ceil(np.log2(nx)))
|
| 103 |
-
|
| 104 |
-
derivatives = QuantumRegister(2*n)
|
| 105 |
-
blocks = QuantumRegister(2)
|
| 106 |
-
|
| 107 |
-
qc = QuantumCircuit(derivatives, blocks)
|
| 108 |
-
|
| 109 |
-
W1 = Wj_block(2, n, "0"*n, -dt , 0, xgate=True)
|
| 110 |
-
qc.append(W1, list(derivatives[0:n])+list(blocks[:]))
|
| 111 |
-
|
| 112 |
-
# qc.barrier()
|
| 113 |
-
|
| 114 |
-
W2 = Wj_block(3, n-1, "1"*(n-1), dt , 0, xgate=[0,1])
|
| 115 |
-
qc.append(W2, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 116 |
-
|
| 117 |
-
# qc.barrier()
|
| 118 |
-
|
| 119 |
-
W3 = Wj_block(1, n+1, "0"*(n+1), dt , 0, xgate=False)
|
| 120 |
-
qc.append(W3, list(derivatives[n:2*n])+list(blocks[:]))
|
| 121 |
-
|
| 122 |
-
# qc.barrier()
|
| 123 |
-
|
| 124 |
-
W4 = Wj_block(2, n, "0"+"1"*(n-1), -dt , 0, xgate=False)
|
| 125 |
-
qc.append(W4, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 126 |
-
|
| 127 |
-
return qc
|
| 128 |
-
|
| 129 |
-
def V2(nx, dt, name = "V2"):
|
| 130 |
-
n = int(np.ceil(np.log2(nx)))
|
| 131 |
-
|
| 132 |
-
derivatives = QuantumRegister(2*n)
|
| 133 |
-
blocks = QuantumRegister(2)
|
| 134 |
-
|
| 135 |
-
qc = QuantumCircuit(derivatives, blocks)
|
| 136 |
-
|
| 137 |
-
W1 = Wj_block(2, 0, "", -2*dt , -np.pi/2, xgate=True)
|
| 138 |
-
qc.append(W1, list(blocks[:]))
|
| 139 |
-
|
| 140 |
-
# qc.barrier()
|
| 141 |
-
|
| 142 |
-
for j in range(1, n+1):
|
| 143 |
-
W2 = Wj_block(2+j, 0, "", 2*dt , -np.pi/2, xgate=[1]*(j-1)+[0,1])
|
| 144 |
-
qc.append(W2, list(derivatives[0:j])+list(blocks[:]))
|
| 145 |
-
|
| 146 |
-
# qc.barrier()
|
| 147 |
-
|
| 148 |
-
W3 = Wj_block(2, n, "0"*n, -dt , -np.pi/2, xgate=True)
|
| 149 |
-
qc.append(W3, list(derivatives[0:n])+list(blocks[:]))
|
| 150 |
-
|
| 151 |
-
# qc.barrier()
|
| 152 |
-
|
| 153 |
-
W4 = Wj_block(2, n, "1"*n, 2*dt , -np.pi/2, xgate=True)
|
| 154 |
-
qc.append(W4, list(derivatives[0:n])+list(blocks[:]))
|
| 155 |
-
|
| 156 |
-
# qc.barrier()
|
| 157 |
-
|
| 158 |
-
W5 = Wj_block(3, n-1, "1"*(n-1), dt , -np.pi/2, xgate=[0,1])
|
| 159 |
-
qc.append(W5, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 160 |
-
|
| 161 |
-
# qc.barrier()
|
| 162 |
-
|
| 163 |
-
W6 = Wj_block(1, 1, "0", 2*dt , -np.pi/2, xgate=False)
|
| 164 |
-
qc.append(W6, list(blocks[:]))
|
| 165 |
-
|
| 166 |
-
# qc.barrier()
|
| 167 |
-
|
| 168 |
-
for j in range(1, n+1):
|
| 169 |
-
W7 = Wj_block(1+j, 1, "0", -2*dt , -np.pi/2, xgate=[1]*(j-1))
|
| 170 |
-
qc.append(W7, [blocks[0]]+list(derivatives[n:n+j])+[blocks[1]])
|
| 171 |
-
|
| 172 |
-
# qc.barrier()
|
| 173 |
-
|
| 174 |
-
W8 = Wj_block(1, n+1, "0"*(n+1), dt , -np.pi/2, xgate=False)
|
| 175 |
-
qc.append(W8, list(derivatives[n:2*n])+list(blocks[:]))
|
| 176 |
-
|
| 177 |
-
# qc.barrier()
|
| 178 |
-
|
| 179 |
-
W9 = Wj_block(1, n+1, "0"+"1"*(n), -2*dt , -np.pi/2, xgate=False)
|
| 180 |
-
qc.append(W9, list(derivatives[n:2*n])+list(blocks[:]))
|
| 181 |
-
|
| 182 |
-
# qc.barrier()
|
| 183 |
-
|
| 184 |
-
W10 = Wj_block(2, n, "0"+"1"*(n-1), -dt , -np.pi/2, xgate=False)
|
| 185 |
-
qc.append(W10, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 186 |
-
|
| 187 |
-
# qc.barrier()
|
| 188 |
-
|
| 189 |
-
return qc
|
| 190 |
-
|
| 191 |
-
def schro(nx, na, R, dt, initial_state, steps):
|
| 192 |
-
|
| 193 |
-
nq = int(np.ceil(np.log2(nx)))
|
| 194 |
-
|
| 195 |
-
# warped phase transformation
|
| 196 |
-
dp = 2 * R * np.pi / 2**na
|
| 197 |
-
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 198 |
-
fp = np.exp(-np.abs(p))
|
| 199 |
-
norm1 = np.linalg.norm(fp[2**(na-1):]) # norm of p>=0
|
| 200 |
-
|
| 201 |
-
# construct quantum circuit
|
| 202 |
-
system = QuantumRegister(2*nq+2, name='system')
|
| 203 |
-
ancilla = QuantumRegister(na, name='ancilla')
|
| 204 |
-
qc = QuantumCircuit(system, ancilla)
|
| 205 |
-
|
| 206 |
-
# initialization
|
| 207 |
-
prep = StatePreparation(initial_state)
|
| 208 |
-
anc_prep = StatePreparation(fp / np.linalg.norm(fp))
|
| 209 |
-
|
| 210 |
-
qc.append(prep, system)
|
| 211 |
-
# qc.append(anc_prep, ancilla)
|
| 212 |
-
qc.initialize(fp / np.linalg.norm(fp), ancilla)
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
# QFT
|
| 216 |
-
qc.append(QFTGate(na), ancilla)
|
| 217 |
-
qc.x(ancilla[-1])
|
| 218 |
-
|
| 219 |
-
A1 = V1(nx, dt, name = "V1").to_gate()
|
| 220 |
-
A2 = V2(nx, dt, name = "V2")
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
# Hamiltonian simulation for Nt steps
|
| 224 |
-
for i in range(steps):
|
| 225 |
-
# circuit for one step
|
| 226 |
-
for j in range(na):
|
| 227 |
-
# repeat controlled H1 for 2**j times
|
| 228 |
-
qc.append(A1.control().repeat(2**j), [ancilla[j]] + system[:])
|
| 229 |
-
|
| 230 |
-
# qc.append(A1.inverse().control(ctrl_state = "0").repeat(2**(na-1)), [ancilla[na-1]] + system[:])
|
| 231 |
-
qc.append(A1.inverse().repeat(2**(na-1)), system[:])
|
| 232 |
-
qc.append(A2, system[:])
|
| 233 |
-
|
| 234 |
-
# rearrange eta
|
| 235 |
-
qc.x(ancilla[-1])
|
| 236 |
-
qc.append(QFTGate(na).inverse(), ancilla)
|
| 237 |
-
|
| 238 |
-
return qc
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
def circ_for_magnitude(field, x, y, nx, na, R, dt, initial_state, steps):
|
| 243 |
-
|
| 244 |
-
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 245 |
-
naimark = QuantumRegister(1, name='Naimark')
|
| 246 |
-
qc.add_register(naimark)
|
| 247 |
-
|
| 248 |
-
if field == 'Ez':
|
| 249 |
-
index = nx * y + x
|
| 250 |
-
elif field == 'Hx':
|
| 251 |
-
index = 2*nx*nx + nx * y + x
|
| 252 |
-
else:
|
| 253 |
-
index = 3*nx*nx + nx * y + x
|
| 254 |
-
|
| 255 |
-
index_bin = format(index, f'0{qc.num_qubits-2}b')
|
| 256 |
-
ctrl_state = '1' + index_bin
|
| 257 |
-
ctrl_qubits = qc.qubits[:-1]
|
| 258 |
-
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state)
|
| 259 |
-
|
| 260 |
-
return qc
|
| 261 |
-
|
| 262 |
-
def circuits_for_sign(field, x, y, nx, na, dt, R, initial_state, steps, xref, yref, field_ref = 'Ez'):
|
| 263 |
-
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 264 |
-
|
| 265 |
-
naimark = QuantumRegister(1, name='Naimark')
|
| 266 |
-
qc.add_register(naimark)
|
| 267 |
-
|
| 268 |
-
if field == 'Ez':
|
| 269 |
-
index = nx * y + x
|
| 270 |
-
elif field == 'Hx':
|
| 271 |
-
index = 2*nx*nx + nx * y + x
|
| 272 |
-
else:
|
| 273 |
-
index = 3*nx*nx + nx * y + x
|
| 274 |
-
|
| 275 |
-
if field_ref == 'Ez':
|
| 276 |
-
index_ref = nx * yref + xref
|
| 277 |
-
elif field_ref == 'Hx':
|
| 278 |
-
index_ref = 2*nx*nx + nx * yref + xref
|
| 279 |
-
else:
|
| 280 |
-
index_ref = 3*nx*nx + nx * yref + xref
|
| 281 |
-
|
| 282 |
-
index_bin = [(index >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 283 |
-
index_ref_bin = [(index_ref >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 284 |
-
index_bin.append(1)
|
| 285 |
-
index_ref_bin.append(1)
|
| 286 |
-
|
| 287 |
-
#Convert reference bitstring to 00000
|
| 288 |
-
for i, bit in enumerate(index_ref_bin):
|
| 289 |
-
if bit == 1:
|
| 290 |
-
qc.x(i)
|
| 291 |
-
|
| 292 |
-
d_bits = [b ^ r for b, r in zip(index_ref_bin, index_bin)]
|
| 293 |
-
control = d_bits.index(1)
|
| 294 |
-
|
| 295 |
-
#Convert the other bitstring to 0001000
|
| 296 |
-
for target, bit in enumerate(d_bits):
|
| 297 |
-
if bit == 1 and target != control:
|
| 298 |
-
qc.cx(control, target)
|
| 299 |
-
qc.h(control)
|
| 300 |
-
|
| 301 |
-
ctrl_state_sum = '0'*(qc.num_qubits-1)
|
| 302 |
-
ctrl_state_diff = '0'*(qc.num_qubits-1-control-1)+'1'+'0'*(control)
|
| 303 |
-
|
| 304 |
-
qcdiff = qc.copy()
|
| 305 |
-
|
| 306 |
-
ctrl_qubits = qc.qubits[:-1]
|
| 307 |
-
|
| 308 |
-
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_sum)
|
| 309 |
-
qcdiff.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_diff)
|
| 310 |
-
|
| 311 |
-
return qc, qcdiff
|
| 312 |
-
|
| 313 |
-
def get_absolute_field_value(qc, nq, na, offset, norm):
|
| 314 |
-
|
| 315 |
-
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 316 |
-
observable = SparsePauliOp(Pauli(pauli_label))
|
| 317 |
-
########################################################################################
|
| 318 |
-
estimator = StatevectorEstimator()
|
| 319 |
-
|
| 320 |
-
# === Run Estimator (no parameters needed) ===
|
| 321 |
-
pub = (qc, observable)
|
| 322 |
-
job = estimator.run([pub])
|
| 323 |
-
result = job.result()[0]
|
| 324 |
-
z_exp = result.data.evs.item()
|
| 325 |
-
#########################################################################################
|
| 326 |
-
# === Compute projector expectation ===
|
| 327 |
-
pi_expect = (1 - z_exp) / 2
|
| 328 |
-
|
| 329 |
-
Absolute_value = norm*np.sqrt(pi_expect)-offset
|
| 330 |
-
|
| 331 |
-
return Absolute_value
|
| 332 |
-
|
| 333 |
-
def get_relative_sign(qc, qcdiff, nq, na):
|
| 334 |
-
|
| 335 |
-
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 336 |
-
observable = SparsePauliOp(Pauli(pauli_label))
|
| 337 |
-
########################################################################################
|
| 338 |
-
estimator = StatevectorEstimator()
|
| 339 |
-
|
| 340 |
-
# === Run Estimator ===
|
| 341 |
-
pub = (qc, observable)
|
| 342 |
-
job = estimator.run([pub])
|
| 343 |
-
result = job.result()[0]
|
| 344 |
-
z_exp = result.data.evs.item()
|
| 345 |
-
|
| 346 |
-
pub_diff = (qcdiff, observable)
|
| 347 |
-
job_diff = estimator.run([pub_diff])
|
| 348 |
-
result_diff = job_diff.result()[0]
|
| 349 |
-
z_exp_diff = result_diff.data.evs.item()
|
| 350 |
-
#########################################################################################
|
| 351 |
-
# === Compute projector expectation ===
|
| 352 |
-
pi_expect_sum = (1 - z_exp) / 2
|
| 353 |
-
pi_expect_diff = (1 - z_exp_diff) / 2
|
| 354 |
-
|
| 355 |
-
relative_sign = 'same' if pi_expect_sum >= pi_expect_diff else 'different'
|
| 356 |
-
|
| 357 |
-
return relative_sign
|
| 358 |
-
|
| 359 |
-
def Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref = 'Ez'):
|
| 360 |
-
if steps < 31:
|
| 361 |
-
offset = 1
|
| 362 |
-
else :
|
| 363 |
-
offset = 0.15
|
| 364 |
-
deltastate = np.zeros(4*nx*nx)
|
| 365 |
-
# deltastate[nx*nx//2+nx//2:nx*nx//2+nx//2+1] = 1
|
| 366 |
-
deltastate[nx*yref+xref] = 1
|
| 367 |
-
deltastate[0:nx*nx] = deltastate[0:nx*nx] + offset
|
| 368 |
-
norm1 = np.linalg.norm(deltastate)
|
| 369 |
-
initial_state = deltastate/norm1
|
| 370 |
-
|
| 371 |
-
dp = 2 * R * np.pi / 2**na
|
| 372 |
-
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 373 |
-
fp = np.exp(-np.abs(p))
|
| 374 |
-
norm2 = np.linalg.norm(fp)
|
| 375 |
-
norm = norm1 * norm2
|
| 376 |
-
|
| 377 |
-
qc = circ_for_magnitude(field_ref, xref, yref, nx, na, R, dt, initial_state, steps)
|
| 378 |
-
|
| 379 |
-
Ezref = get_absolute_field_value(qc, nq, na, offset, norm)
|
| 380 |
-
|
| 381 |
-
return Ezref
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
def transpile_circ(circ, basis_gates=None):
|
| 385 |
-
"""
|
| 386 |
-
Transpile the circuit to the specified basis gates.
|
| 387 |
-
"""
|
| 388 |
-
if basis_gates is None:
|
| 389 |
-
basis_gates = ['z', 'y', 'x', 'sdg', 's', 'h', 'rz', 'ry', 'rx', 'ecr', 'cz', 'cx']
|
| 390 |
-
|
| 391 |
-
transpiled_circ = transpile(circ, basis_gates=basis_gates)
|
| 392 |
-
return transpiled_circ
|
| 393 |
-
|
| 394 |
-
def compute_fidelity(circ1, circ2):
|
| 395 |
-
|
| 396 |
-
circ_1 = tensornetwork_from_circuit(transpile_circ(circ1), simulator_settings)
|
| 397 |
-
circ_2 = tensornetwork_from_circuit(transpile_circ(circ2), simulator_settings)
|
| 398 |
-
fidelity = abs(compute_overlap(circ_1, circ_2))**2
|
| 399 |
-
|
| 400 |
-
return fidelity
|
| 401 |
-
|
| 402 |
-
# def create_impulse_state(grid_dims, impulse_pos):
|
| 403 |
-
# """
|
| 404 |
-
# Creates an initial state vector with a single delta impulse at a specified grid position.
|
| 405 |
-
|
| 406 |
-
# The 2D grid is flattened into a 1D vector in row-major order, and this
|
| 407 |
-
# vector is then padded to match the full simulation state space size (4x).
|
| 408 |
-
|
| 409 |
-
# Args:
|
| 410 |
-
# grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
|
| 411 |
-
# For your original code, this would be (nx, nx).
|
| 412 |
-
# impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
|
| 413 |
-
# Coordinates are 0-indexed.
|
| 414 |
-
|
| 415 |
-
# Returns:
|
| 416 |
-
# numpy.ndarray: The full, padded initial state vector with a single 1.
|
| 417 |
-
|
| 418 |
-
# Raises:
|
| 419 |
-
# ValueError: If the impulse position is outside the grid dimensions.
|
| 420 |
-
# """
|
| 421 |
-
# grid_width, grid_height = grid_dims
|
| 422 |
-
# impulse_x, impulse_y = impulse_pos
|
| 423 |
-
|
| 424 |
-
# # --- Input Validation ---
|
| 425 |
-
# # Ensure the requested impulse position is actually on the grid.
|
| 426 |
-
# if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
|
| 427 |
-
# raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
|
| 428 |
-
# f"grid dimensions ({grid_width}x{grid_height}).")
|
| 429 |
-
|
| 430 |
-
# # --- 1. Calculate the 1D Array Index ---
|
| 431 |
-
# # Convert the (x, y) coordinate to a single index in a flattened 1D array.
|
| 432 |
-
# # The formula for row-major order is: index = y_coord * width + x_coord
|
| 433 |
-
# flat_index = impulse_y * grid_width + impulse_x
|
| 434 |
-
|
| 435 |
-
# # --- 2. Create the Full, Padded State Vector ---
|
| 436 |
-
# grid_size = grid_width * grid_height
|
| 437 |
-
# total_size = 4 * grid_size # The simulation space is 4x the grid size.
|
| 438 |
-
# initial_state = np.zeros(total_size)
|
| 439 |
-
|
| 440 |
-
# # --- 3. Set the Delta Impulse ---
|
| 441 |
-
# initial_state[flat_index] = 1
|
| 442 |
-
|
| 443 |
-
# return initial_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/base_ionq.py
DELETED
|
@@ -1,458 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import scipy.sparse as sp
|
| 3 |
-
import math
|
| 4 |
-
import random
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
from scipy.special import jn
|
| 7 |
-
from scipy.sparse import identity, csr_matrix, kron, diags, eye
|
| 8 |
-
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
| 9 |
-
from qiskit.circuit.library import MCXGate, MCPhaseGate, RXGate, CRXGate, QFTGate, StatePreparation, PauliEvolutionGate, RZGate
|
| 10 |
-
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator, Pauli
|
| 11 |
-
from scipy.linalg import expm
|
| 12 |
-
# from tools import *
|
| 13 |
-
from qiskit.qasm3 import dumps # QASM 3 exporter
|
| 14 |
-
from qiskit.qasm3 import loads
|
| 15 |
-
from qiskit.circuit.library import QFT
|
| 16 |
-
from qiskit.primitives import StatevectorEstimator
|
| 17 |
-
from qiskit import transpile
|
| 18 |
-
from qiskit_addon_aqc_tensor.simulation import tensornetwork_from_circuit, apply_circuit_to_state, compute_overlap
|
| 19 |
-
from qiskit_aer import AerSimulator
|
| 20 |
-
from qiskit_ionq import IonQProvider
|
| 21 |
-
import os
|
| 22 |
-
my_api_key = os.getenv("IONQ_API_KEY")
|
| 23 |
-
from qiskit_ibm_runtime import QiskitRuntimeService, EstimatorV2 as Estimator
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# provider = IonQProvider()
|
| 29 |
-
|
| 30 |
-
api_token = "SgUkiDq1r2bVEadyiUfvtuxQ03Qci6UW"
|
| 31 |
-
provider = IonQProvider(api_token)
|
| 32 |
-
ionq_backend = provider.get_backend("simulator")
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
simulator_settings = AerSimulator(
|
| 38 |
-
method="matrix_product_state",
|
| 39 |
-
matrix_product_state_max_bond_dimension=100,
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
def Wj(j, theta, lam, name='Wj', xgate=False):
|
| 43 |
-
if not xgate:
|
| 44 |
-
name = f' $W_{j}$ '
|
| 45 |
-
qc=QuantumCircuit(j, name=name)
|
| 46 |
-
|
| 47 |
-
if j > 1:
|
| 48 |
-
qc.cx(j-1, range(j-1))
|
| 49 |
-
if lam != 0:
|
| 50 |
-
qc.p(lam, j-1)
|
| 51 |
-
qc.h(j-1)
|
| 52 |
-
if xgate:
|
| 53 |
-
qc.x(range(j-1))
|
| 54 |
-
|
| 55 |
-
# the multicontrolled rz gate
|
| 56 |
-
# it will be decomposed in qiskit
|
| 57 |
-
if j > 1:
|
| 58 |
-
qc.mcrz(theta, range(j-1), j-1)
|
| 59 |
-
else:
|
| 60 |
-
qc.rz(theta, j-1)
|
| 61 |
-
|
| 62 |
-
if xgate:
|
| 63 |
-
qc.x(range(j-1))
|
| 64 |
-
qc.h(j-1)
|
| 65 |
-
if lam != 0:
|
| 66 |
-
qc.p(-lam, j-1)
|
| 67 |
-
if j > 1:
|
| 68 |
-
qc.cx(j-1, range(j-1))
|
| 69 |
-
|
| 70 |
-
return qc
|
| 71 |
-
|
| 72 |
-
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
|
| 73 |
-
if not xgate:
|
| 74 |
-
name = f' $W_{j}_block$ '
|
| 75 |
-
qc=QuantumCircuit(n + j, name=name)
|
| 76 |
-
|
| 77 |
-
if j > 1:
|
| 78 |
-
qc.cx(n + j-1, range(n, n+j-1))
|
| 79 |
-
if lam != 0:
|
| 80 |
-
qc.p(lam, n + j -1)
|
| 81 |
-
qc.h(n + j -1)
|
| 82 |
-
|
| 83 |
-
if xgate and j>1:
|
| 84 |
-
if isinstance(xgate, (list, tuple)): # selective application
|
| 85 |
-
for idx, flag in enumerate(xgate):
|
| 86 |
-
if flag: # only apply where flag == 1
|
| 87 |
-
qc.x(n + idx)
|
| 88 |
-
elif xgate is True: # apply to all
|
| 89 |
-
qc.x(range(n, n+j-1))
|
| 90 |
-
|
| 91 |
-
# the multicontrolled rz gate
|
| 92 |
-
# it will be decomposed in qiskit
|
| 93 |
-
if j > 1:
|
| 94 |
-
mcrz = RZGate(theta).control(len(ctrl_state) + j-1, ctrl_state = "1"*(j-1)+ctrl_state)
|
| 95 |
-
qc.append(mcrz, range(0, n + j))
|
| 96 |
-
else:
|
| 97 |
-
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state = ctrl_state)
|
| 98 |
-
qc.append(mcrz, range(0, n+j))
|
| 99 |
-
|
| 100 |
-
if xgate and j>1:
|
| 101 |
-
if isinstance(xgate, (list, tuple)): # selective application
|
| 102 |
-
for idx, flag in enumerate(xgate):
|
| 103 |
-
if flag: # only apply where flag == 1
|
| 104 |
-
qc.x(n + idx)
|
| 105 |
-
elif xgate is True: # apply to all
|
| 106 |
-
qc.x(range(n, n+j-1))
|
| 107 |
-
|
| 108 |
-
qc.h(n+ j-1)
|
| 109 |
-
if lam != 0:
|
| 110 |
-
qc.p(-lam, n + j-1)
|
| 111 |
-
if j > 1:
|
| 112 |
-
qc.cx(n + j-1, range(n, n +j-1))
|
| 113 |
-
|
| 114 |
-
return qc.to_gate(label=name)
|
| 115 |
-
|
| 116 |
-
def V1(nx, dt, name = "V1"):
|
| 117 |
-
n = int(np.ceil(np.log2(nx)))
|
| 118 |
-
|
| 119 |
-
derivatives = QuantumRegister(2*n)
|
| 120 |
-
blocks = QuantumRegister(2)
|
| 121 |
-
|
| 122 |
-
qc = QuantumCircuit(derivatives, blocks)
|
| 123 |
-
|
| 124 |
-
W1 = Wj_block(2, n, "0"*n, -dt , 0, xgate=True)
|
| 125 |
-
qc.append(W1, list(derivatives[0:n])+list(blocks[:]))
|
| 126 |
-
|
| 127 |
-
# qc.barrier()
|
| 128 |
-
|
| 129 |
-
W2 = Wj_block(3, n-1, "1"*(n-1), dt , 0, xgate=[0,1])
|
| 130 |
-
qc.append(W2, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 131 |
-
|
| 132 |
-
# qc.barrier()
|
| 133 |
-
|
| 134 |
-
W3 = Wj_block(1, n+1, "0"*(n+1), dt , 0, xgate=False)
|
| 135 |
-
qc.append(W3, list(derivatives[n:2*n])+list(blocks[:]))
|
| 136 |
-
|
| 137 |
-
# qc.barrier()
|
| 138 |
-
|
| 139 |
-
W4 = Wj_block(2, n, "0"+"1"*(n-1), -dt , 0, xgate=False)
|
| 140 |
-
qc.append(W4, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 141 |
-
|
| 142 |
-
return qc
|
| 143 |
-
|
| 144 |
-
def V2(nx, dt, name = "V2"):
|
| 145 |
-
n = int(np.ceil(np.log2(nx)))
|
| 146 |
-
|
| 147 |
-
derivatives = QuantumRegister(2*n)
|
| 148 |
-
blocks = QuantumRegister(2)
|
| 149 |
-
|
| 150 |
-
qc = QuantumCircuit(derivatives, blocks)
|
| 151 |
-
|
| 152 |
-
W1 = Wj_block(2, 0, "", -2*dt , -np.pi/2, xgate=True)
|
| 153 |
-
qc.append(W1, list(blocks[:]))
|
| 154 |
-
|
| 155 |
-
# qc.barrier()
|
| 156 |
-
|
| 157 |
-
for j in range(1, n+1):
|
| 158 |
-
W2 = Wj_block(2+j, 0, "", 2*dt , -np.pi/2, xgate=[1]*(j-1)+[0,1])
|
| 159 |
-
qc.append(W2, list(derivatives[0:j])+list(blocks[:]))
|
| 160 |
-
|
| 161 |
-
# qc.barrier()
|
| 162 |
-
|
| 163 |
-
W3 = Wj_block(2, n, "0"*n, -dt , -np.pi/2, xgate=True)
|
| 164 |
-
qc.append(W3, list(derivatives[0:n])+list(blocks[:]))
|
| 165 |
-
|
| 166 |
-
# qc.barrier()
|
| 167 |
-
|
| 168 |
-
W4 = Wj_block(2, n, "1"*n, 2*dt , -np.pi/2, xgate=True)
|
| 169 |
-
qc.append(W4, list(derivatives[0:n])+list(blocks[:]))
|
| 170 |
-
|
| 171 |
-
# qc.barrier()
|
| 172 |
-
|
| 173 |
-
W5 = Wj_block(3, n-1, "1"*(n-1), dt , -np.pi/2, xgate=[0,1])
|
| 174 |
-
qc.append(W5, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 175 |
-
|
| 176 |
-
# qc.barrier()
|
| 177 |
-
|
| 178 |
-
W6 = Wj_block(1, 1, "0", 2*dt , -np.pi/2, xgate=False)
|
| 179 |
-
qc.append(W6, list(blocks[:]))
|
| 180 |
-
|
| 181 |
-
# qc.barrier()
|
| 182 |
-
|
| 183 |
-
for j in range(1, n+1):
|
| 184 |
-
W7 = Wj_block(1+j, 1, "0", -2*dt , -np.pi/2, xgate=[1]*(j-1))
|
| 185 |
-
qc.append(W7, [blocks[0]]+list(derivatives[n:n+j])+[blocks[1]])
|
| 186 |
-
|
| 187 |
-
# qc.barrier()
|
| 188 |
-
|
| 189 |
-
W8 = Wj_block(1, n+1, "0"*(n+1), dt , -np.pi/2, xgate=False)
|
| 190 |
-
qc.append(W8, list(derivatives[n:2*n])+list(blocks[:]))
|
| 191 |
-
|
| 192 |
-
# qc.barrier()
|
| 193 |
-
|
| 194 |
-
W9 = Wj_block(1, n+1, "0"+"1"*(n), -2*dt , -np.pi/2, xgate=False)
|
| 195 |
-
qc.append(W9, list(derivatives[n:2*n])+list(blocks[:]))
|
| 196 |
-
|
| 197 |
-
# qc.barrier()
|
| 198 |
-
|
| 199 |
-
W10 = Wj_block(2, n, "0"+"1"*(n-1), -dt , -np.pi/2, xgate=False)
|
| 200 |
-
qc.append(W10, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 201 |
-
|
| 202 |
-
# qc.barrier()
|
| 203 |
-
|
| 204 |
-
return qc
|
| 205 |
-
|
| 206 |
-
def schro(nx, na, R, dt, initial_state, steps):
|
| 207 |
-
|
| 208 |
-
nq = int(np.ceil(np.log2(nx)))
|
| 209 |
-
|
| 210 |
-
# warped phase transformation
|
| 211 |
-
dp = 2 * R * np.pi / 2**na
|
| 212 |
-
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 213 |
-
fp = np.exp(-np.abs(p))
|
| 214 |
-
norm1 = np.linalg.norm(fp[2**(na-1):]) # norm of p>=0
|
| 215 |
-
|
| 216 |
-
# construct quantum circuit
|
| 217 |
-
system = QuantumRegister(2*nq+2, name='system')
|
| 218 |
-
ancilla = QuantumRegister(na, name='ancilla')
|
| 219 |
-
qc = QuantumCircuit(system, ancilla)
|
| 220 |
-
|
| 221 |
-
# initialization
|
| 222 |
-
prep = StatePreparation(initial_state)
|
| 223 |
-
anc_prep = StatePreparation(fp / np.linalg.norm(fp))
|
| 224 |
-
|
| 225 |
-
qc.append(prep, system)
|
| 226 |
-
# qc.append(anc_prep, ancilla)
|
| 227 |
-
qc.initialize(fp / np.linalg.norm(fp), ancilla)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
# QFT
|
| 231 |
-
qc.append(QFTGate(na), ancilla)
|
| 232 |
-
qc.x(ancilla[-1])
|
| 233 |
-
|
| 234 |
-
A1 = V1(nx, dt, name = "V1").to_gate()
|
| 235 |
-
A2 = V2(nx, dt, name = "V2")
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
# Hamiltonian simulation for Nt steps
|
| 239 |
-
for i in range(steps):
|
| 240 |
-
# circuit for one step
|
| 241 |
-
for j in range(na):
|
| 242 |
-
# repeat controlled H1 for 2**j times
|
| 243 |
-
qc.append(A1.control().repeat(2**j), [ancilla[j]] + system[:])
|
| 244 |
-
|
| 245 |
-
# qc.append(A1.inverse().control(ctrl_state = "0").repeat(2**(na-1)), [ancilla[na-1]] + system[:])
|
| 246 |
-
qc.append(A1.inverse().repeat(2**(na-1)), system[:])
|
| 247 |
-
qc.append(A2, system[:])
|
| 248 |
-
|
| 249 |
-
# rearrange eta
|
| 250 |
-
qc.x(ancilla[-1])
|
| 251 |
-
qc.append(QFTGate(na).inverse(), ancilla)
|
| 252 |
-
|
| 253 |
-
return qc
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
def circ_for_magnitude(field, x, y, nx, na, R, dt, initial_state, steps):
|
| 258 |
-
|
| 259 |
-
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 260 |
-
naimark = QuantumRegister(1, name='Naimark')
|
| 261 |
-
qc.add_register(naimark)
|
| 262 |
-
|
| 263 |
-
if field == 'Ez':
|
| 264 |
-
index = nx * y + x
|
| 265 |
-
elif field == 'Hx':
|
| 266 |
-
index = 2*nx*nx + nx * y + x
|
| 267 |
-
else:
|
| 268 |
-
index = 3*nx*nx + nx * y + x
|
| 269 |
-
|
| 270 |
-
index_bin = format(index, f'0{qc.num_qubits-2}b')
|
| 271 |
-
ctrl_state = '1' + index_bin
|
| 272 |
-
ctrl_qubits = qc.qubits[:-1]
|
| 273 |
-
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state)
|
| 274 |
-
|
| 275 |
-
return qc
|
| 276 |
-
|
| 277 |
-
def circuits_for_sign(field, x, y, nx, na, dt, R, initial_state, steps, xref, yref, field_ref = 'Ez'):
|
| 278 |
-
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 279 |
-
|
| 280 |
-
naimark = QuantumRegister(1, name='Naimark')
|
| 281 |
-
qc.add_register(naimark)
|
| 282 |
-
|
| 283 |
-
if field == 'Ez':
|
| 284 |
-
index = nx * y + x
|
| 285 |
-
elif field == 'Hx':
|
| 286 |
-
index = 2*nx*nx + nx * y + x
|
| 287 |
-
else:
|
| 288 |
-
index = 3*nx*nx + nx * y + x
|
| 289 |
-
|
| 290 |
-
if field_ref == 'Ez':
|
| 291 |
-
index_ref = nx * yref + xref
|
| 292 |
-
elif field_ref == 'Hx':
|
| 293 |
-
index_ref = 2*nx*nx + nx * yref + xref
|
| 294 |
-
else:
|
| 295 |
-
index_ref = 3*nx*nx + nx * yref + xref
|
| 296 |
-
|
| 297 |
-
index_bin = [(index >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 298 |
-
index_ref_bin = [(index_ref >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 299 |
-
index_bin.append(1)
|
| 300 |
-
index_ref_bin.append(1)
|
| 301 |
-
|
| 302 |
-
#Convert reference bitstring to 00000
|
| 303 |
-
for i, bit in enumerate(index_ref_bin):
|
| 304 |
-
if bit == 1:
|
| 305 |
-
qc.x(i)
|
| 306 |
-
|
| 307 |
-
d_bits = [b ^ r for b, r in zip(index_ref_bin, index_bin)]
|
| 308 |
-
control = d_bits.index(1)
|
| 309 |
-
|
| 310 |
-
#Convert the other bitstring to 0001000
|
| 311 |
-
for target, bit in enumerate(d_bits):
|
| 312 |
-
if bit == 1 and target != control:
|
| 313 |
-
qc.cx(control, target)
|
| 314 |
-
qc.h(control)
|
| 315 |
-
|
| 316 |
-
ctrl_state_sum = '0'*(qc.num_qubits-1)
|
| 317 |
-
ctrl_state_diff = '0'*(qc.num_qubits-1-control-1)+'1'+'0'*(control)
|
| 318 |
-
|
| 319 |
-
qcdiff = qc.copy()
|
| 320 |
-
|
| 321 |
-
ctrl_qubits = qc.qubits[:-1]
|
| 322 |
-
|
| 323 |
-
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_sum)
|
| 324 |
-
qcdiff.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_diff)
|
| 325 |
-
|
| 326 |
-
return qc, qcdiff
|
| 327 |
-
|
| 328 |
-
def get_absolute_field_value(qc, nq, na, offset, norm):
|
| 329 |
-
|
| 330 |
-
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 331 |
-
observable = SparsePauliOp(Pauli(pauli_label))
|
| 332 |
-
########################################################################################
|
| 333 |
-
estimator = StatevectorEstimator()
|
| 334 |
-
|
| 335 |
-
# === Run Estimator (no parameters needed) ===
|
| 336 |
-
pub = (qc, observable)
|
| 337 |
-
job = estimator.run([pub])
|
| 338 |
-
result = job.result()[0]
|
| 339 |
-
z_exp = result.data.evs.item()
|
| 340 |
-
#########################################################################################
|
| 341 |
-
# === Compute projector expectation ===
|
| 342 |
-
pi_expect = (1 - z_exp) / 2
|
| 343 |
-
|
| 344 |
-
Absolute_value = norm*np.sqrt(pi_expect)-offset
|
| 345 |
-
|
| 346 |
-
return Absolute_value
|
| 347 |
-
|
| 348 |
-
def get_relative_sign(qc, qcdiff, nq, na):
|
| 349 |
-
|
| 350 |
-
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 351 |
-
observable = SparsePauliOp(Pauli(pauli_label))
|
| 352 |
-
########################################################################################
|
| 353 |
-
estimator = StatevectorEstimator()
|
| 354 |
-
|
| 355 |
-
# === Run Estimator ===
|
| 356 |
-
pub = (qc, observable)
|
| 357 |
-
job = estimator.run([pub])
|
| 358 |
-
result = job.result()[0]
|
| 359 |
-
z_exp = result.data.evs.item()
|
| 360 |
-
|
| 361 |
-
pub_diff = (qcdiff, observable)
|
| 362 |
-
job_diff = estimator.run([pub_diff])
|
| 363 |
-
result_diff = job_diff.result()[0]
|
| 364 |
-
z_exp_diff = result_diff.data.evs.item()
|
| 365 |
-
#########################################################################################
|
| 366 |
-
# === Compute projector expectation ===
|
| 367 |
-
pi_expect_sum = (1 - z_exp) / 2
|
| 368 |
-
pi_expect_diff = (1 - z_exp_diff) / 2
|
| 369 |
-
|
| 370 |
-
relative_sign = 'same' if pi_expect_sum >= pi_expect_diff else 'different'
|
| 371 |
-
|
| 372 |
-
return relative_sign
|
| 373 |
-
|
| 374 |
-
def Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref = 'Ez'):
|
| 375 |
-
if steps < 31:
|
| 376 |
-
offset = 1
|
| 377 |
-
else :
|
| 378 |
-
offset = 0.15
|
| 379 |
-
deltastate = np.zeros(4*nx*nx)
|
| 380 |
-
# deltastate[nx*nx//2+nx//2:nx*nx//2+nx//2+1] = 1
|
| 381 |
-
deltastate[nx*yref+xref] = 1
|
| 382 |
-
deltastate[0:nx*nx] = deltastate[0:nx*nx] + offset
|
| 383 |
-
norm1 = np.linalg.norm(deltastate)
|
| 384 |
-
initial_state = deltastate/norm1
|
| 385 |
-
|
| 386 |
-
dp = 2 * R * np.pi / 2**na
|
| 387 |
-
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 388 |
-
fp = np.exp(-np.abs(p))
|
| 389 |
-
norm2 = np.linalg.norm(fp)
|
| 390 |
-
norm = norm1 * norm2
|
| 391 |
-
|
| 392 |
-
qc = circ_for_magnitude(field_ref, xref, yref, nx, na, R, dt, initial_state, steps)
|
| 393 |
-
|
| 394 |
-
Ezref = get_absolute_field_value(qc, nq, na, offset, norm)
|
| 395 |
-
|
| 396 |
-
return Ezref
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
def transpile_circ(circ, basis_gates=None):
|
| 400 |
-
"""
|
| 401 |
-
Transpile the circuit to the specified basis gates.
|
| 402 |
-
"""
|
| 403 |
-
if basis_gates is None:
|
| 404 |
-
basis_gates = ['z', 'y', 'x', 'sdg', 's', 'h', 'rz', 'ry', 'rx', 'ecr', 'cz', 'cx']
|
| 405 |
-
|
| 406 |
-
transpiled_circ = transpile(circ, basis_gates=basis_gates)
|
| 407 |
-
return transpiled_circ
|
| 408 |
-
|
| 409 |
-
def compute_fidelity(circ1, circ2):
|
| 410 |
-
|
| 411 |
-
circ_1 = tensornetwork_from_circuit(transpile_circ(circ1), simulator_settings)
|
| 412 |
-
circ_2 = tensornetwork_from_circuit(transpile_circ(circ2), simulator_settings)
|
| 413 |
-
fidelity = abs(compute_overlap(circ_1, circ_2))**2
|
| 414 |
-
|
| 415 |
-
return fidelity
|
| 416 |
-
|
| 417 |
-
# def create_impulse_state(grid_dims, impulse_pos):
|
| 418 |
-
# """
|
| 419 |
-
# Creates an initial state vector with a single delta impulse at a specified grid position.
|
| 420 |
-
|
| 421 |
-
# The 2D grid is flattened into a 1D vector in row-major order, and this
|
| 422 |
-
# vector is then padded to match the full simulation state space size (4x).
|
| 423 |
-
|
| 424 |
-
# Args:
|
| 425 |
-
# grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
|
| 426 |
-
# For your original code, this would be (nx, nx).
|
| 427 |
-
# impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
|
| 428 |
-
# Coordinates are 0-indexed.
|
| 429 |
-
|
| 430 |
-
# Returns:
|
| 431 |
-
# numpy.ndarray: The full, padded initial state vector with a single 1.
|
| 432 |
-
|
| 433 |
-
# Raises:
|
| 434 |
-
# ValueError: If the impulse position is outside the grid dimensions.
|
| 435 |
-
# """
|
| 436 |
-
# grid_width, grid_height = grid_dims
|
| 437 |
-
# impulse_x, impulse_y = impulse_pos
|
| 438 |
-
|
| 439 |
-
# # --- Input Validation ---
|
| 440 |
-
# # Ensure the requested impulse position is actually on the grid.
|
| 441 |
-
# if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
|
| 442 |
-
# raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
|
| 443 |
-
# f"grid dimensions ({grid_width}x{grid_height}).")
|
| 444 |
-
|
| 445 |
-
# # --- 1. Calculate the 1D Array Index ---
|
| 446 |
-
# # Convert the (x, y) coordinate to a single index in a flattened 1D array.
|
| 447 |
-
# # The formula for row-major order is: index = y_coord * width + x_coord
|
| 448 |
-
# flat_index = impulse_y * grid_width + impulse_x
|
| 449 |
-
|
| 450 |
-
# # --- 2. Create the Full, Padded State Vector ---
|
| 451 |
-
# grid_size = grid_width * grid_height
|
| 452 |
-
# total_size = 4 * grid_size # The simulation space is 4x the grid size.
|
| 453 |
-
# initial_state = np.zeros(total_size)
|
| 454 |
-
|
| 455 |
-
# # --- 3. Set the Delta Impulse ---
|
| 456 |
-
# initial_state[flat_index] = 1
|
| 457 |
-
|
| 458 |
-
# return initial_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/delta_impulse_generator.py
DELETED
|
@@ -1,493 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import math
|
| 3 |
-
from qiskit.circuit import QuantumCircuit, QuantumRegister
|
| 4 |
-
from qiskit.circuit.library import StatePreparation, QFTGate, RZGate
|
| 5 |
-
from qiskit.quantum_info import Statevector
|
| 6 |
-
import pyvista as pv
|
| 7 |
-
|
| 8 |
-
def create_impulse_state(grid_dims, impulse_pos):
|
| 9 |
-
"""
|
| 10 |
-
Creates an initial state vector with a single delta impulse at a specified grid position.
|
| 11 |
-
|
| 12 |
-
The 2D grid is flattened into a 1D vector in row-major order, and this
|
| 13 |
-
vector is then padded to match the full simulation state space size (4x).
|
| 14 |
-
|
| 15 |
-
Args:
|
| 16 |
-
grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
|
| 17 |
-
For your original code, this would be (nx, nx).
|
| 18 |
-
impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
|
| 19 |
-
Coordinates are 0-indexed.
|
| 20 |
-
|
| 21 |
-
Returns:
|
| 22 |
-
numpy.ndarray: The full, padded initial state vector with a single 1.
|
| 23 |
-
|
| 24 |
-
Raises:
|
| 25 |
-
ValueError: If the impulse position is outside the grid dimensions.
|
| 26 |
-
"""
|
| 27 |
-
grid_width, grid_height = grid_dims
|
| 28 |
-
impulse_x, impulse_y = impulse_pos
|
| 29 |
-
|
| 30 |
-
# --- Input Validation ---
|
| 31 |
-
# Ensure the requested impulse position is actually on the grid.
|
| 32 |
-
if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
|
| 33 |
-
raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
|
| 34 |
-
f"grid dimensions ({grid_width}x{grid_height}).")
|
| 35 |
-
|
| 36 |
-
# --- 1. Calculate the 1D Array Index ---
|
| 37 |
-
# Convert the (x, y) coordinate to a single index in a flattened 1D array.
|
| 38 |
-
# The formula for row-major order is: index = y_coord * width + x_coord
|
| 39 |
-
flat_index = impulse_y * grid_width + impulse_x
|
| 40 |
-
|
| 41 |
-
# --- 2. Create the Full, Padded State Vector ---
|
| 42 |
-
grid_size = grid_width * grid_height
|
| 43 |
-
total_size = 4 * grid_size # The simulation space is 4x the grid size.
|
| 44 |
-
initial_state = np.zeros(total_size)
|
| 45 |
-
|
| 46 |
-
# --- 3. Set the Delta Impulse ---
|
| 47 |
-
initial_state[flat_index] = 1
|
| 48 |
-
|
| 49 |
-
return initial_state
|
| 50 |
-
|
| 51 |
-
def create_gaussian_state(grid_dims, mu, sigma):
|
| 52 |
-
"""
|
| 53 |
-
Creates an initial state vector with a 2D Gaussian distribution.
|
| 54 |
-
|
| 55 |
-
The state is normalized and padded to match the full simulation state space size (4x).
|
| 56 |
-
|
| 57 |
-
Args:
|
| 58 |
-
grid_dims (tuple): A tuple (width, height) defining the grid dimensions.
|
| 59 |
-
mu (tuple): A tuple (mu_x, mu_y) for the center (mean) of the Gaussian.
|
| 60 |
-
sigma (tuple): A tuple (sigma_x, sigma_y) for the standard deviation (spread).
|
| 61 |
-
|
| 62 |
-
Returns:
|
| 63 |
-
numpy.ndarray: The full, padded initial state vector for the Gaussian state.
|
| 64 |
-
|
| 65 |
-
Raises:
|
| 66 |
-
ValueError: If sigma values are not positive.
|
| 67 |
-
"""
|
| 68 |
-
grid_width, grid_height = grid_dims
|
| 69 |
-
mu_x, mu_y = mu
|
| 70 |
-
sigma_x, sigma_y = sigma
|
| 71 |
-
|
| 72 |
-
if sigma_x <= 0 or sigma_y <= 0:
|
| 73 |
-
raise ValueError("Sigma values (spread) must be positive.")
|
| 74 |
-
|
| 75 |
-
# --- 1. Create a Coordinate Grid ---
|
| 76 |
-
x = np.arange(0, grid_width)
|
| 77 |
-
y = np.arange(0, grid_height)
|
| 78 |
-
X, Y = np.meshgrid(x, y)
|
| 79 |
-
|
| 80 |
-
# --- 2. Calculate the 2D Gaussian Function ---
|
| 81 |
-
gaussian_2d = np.exp(-((X - mu_x)**2 / (2 * sigma_x**2)) -
|
| 82 |
-
((Y - mu_y)**2 / (2 * sigma_y**2)))
|
| 83 |
-
|
| 84 |
-
# --- 3. Normalize the State Vector ---
|
| 85 |
-
# For a valid quantum state, the L2 norm (sum of squares of amplitudes) must be 1.
|
| 86 |
-
norm = np.linalg.norm(gaussian_2d)
|
| 87 |
-
if norm > 0:
|
| 88 |
-
gaussian_2d = gaussian_2d / norm
|
| 89 |
-
|
| 90 |
-
# --- 4. Flatten and Pad the Vector ---
|
| 91 |
-
gaussian_flat = gaussian_2d.flatten()
|
| 92 |
-
grid_size = grid_width * grid_height
|
| 93 |
-
total_size = 4 * grid_size
|
| 94 |
-
initial_state = np.pad(gaussian_flat, (0, total_size - grid_size), mode='constant')
|
| 95 |
-
|
| 96 |
-
return initial_state
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# --- New: Continuous-position helpers for excitation before meshing ---
|
| 103 |
-
def _normalize_to_unit(vec: np.ndarray) -> np.ndarray:
|
| 104 |
-
n = np.linalg.norm(vec)
|
| 105 |
-
return vec / n if n > 0 else vec
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def create_impulse_state_from_pos(grid_dims, pos01):
|
| 111 |
-
"""
|
| 112 |
-
Create a delta-like initial state from continuous position pos01=(x,y) in [0,1].
|
| 113 |
-
|
| 114 |
-
Why grid_dims?
|
| 115 |
-
- Simulation runs on a discrete nx×ny lattice; the continuous position must be
|
| 116 |
-
discretized onto that grid to produce the state vector fed into the solver.
|
| 117 |
-
- grid_dims provides (nx, ny) so we can map (x,y)∈[0,1]→grid coordinates via
|
| 118 |
-
gx = x*(nx-1), gy = y*(ny-1), then distribute amplitude bilinearly to the 4
|
| 119 |
-
neighboring nodes. This is required only for the simulation state, not the preview.
|
| 120 |
-
|
| 121 |
-
The preview uses create_impulse_preview_state(), which renders a smooth bump on a
|
| 122 |
-
fixed unit-square grid independent of nx for visualization.
|
| 123 |
-
"""
|
| 124 |
-
grid_width, grid_height = grid_dims
|
| 125 |
-
px, py = pos01
|
| 126 |
-
px = float(max(0.0, min(1.0, px)))
|
| 127 |
-
py = float(max(0.0, min(1.0, py)))
|
| 128 |
-
|
| 129 |
-
gx = px * (grid_width - 1)
|
| 130 |
-
gy = py * (grid_height - 1)
|
| 131 |
-
i0, j0 = int(np.floor(gx)), int(np.floor(gy))
|
| 132 |
-
i1, j1 = min(i0 + 1, grid_width - 1), min(j0 + 1, grid_height - 1)
|
| 133 |
-
dx, dy = gx - i0, gy - j0
|
| 134 |
-
|
| 135 |
-
w00 = (1 - dx) * (1 - dy)
|
| 136 |
-
w10 = dx * (1 - dy)
|
| 137 |
-
w01 = (1 - dx) * dy
|
| 138 |
-
w11 = dx * dy
|
| 139 |
-
|
| 140 |
-
grid_size = grid_width * grid_height
|
| 141 |
-
total_size = 4 * grid_size
|
| 142 |
-
field = np.zeros(grid_size)
|
| 143 |
-
field[j0 * grid_width + i0] += w00
|
| 144 |
-
field[j0 * grid_width + i1] += w10
|
| 145 |
-
field[j1 * grid_width + i0] += w01
|
| 146 |
-
field[j1 * grid_width + i1] += w11
|
| 147 |
-
field = _normalize_to_unit(field)
|
| 148 |
-
|
| 149 |
-
initial_state = np.zeros(total_size)
|
| 150 |
-
initial_state[:grid_size] = field
|
| 151 |
-
return initial_state
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def create_gaussian_state_from_pos(grid_dims, mu01, sigma01):
|
| 155 |
-
"""
|
| 156 |
-
Create a Gaussian initial state with center mu01=(x,y) and spreads sigma01=(sx,sy)
|
| 157 |
-
in [0,1] of the domain, then discretize to the solver grid given by grid_dims.
|
| 158 |
-
|
| 159 |
-
Why grid_dims?
|
| 160 |
-
- The quantum solver expects a vector aligned to the chosen nx×ny simulation grid.
|
| 161 |
-
We convert normalized μ and σ (fractions of the domain) into grid units using
|
| 162 |
-
(nx-1) and (ny-1). This step is necessary for the simulation, not for the preview.
|
| 163 |
-
|
| 164 |
-
For preview-only rendering, use create_impulse_preview_state() to keep the visuals
|
| 165 |
-
continuous and independent of nx.
|
| 166 |
-
"""
|
| 167 |
-
grid_width, grid_height = grid_dims
|
| 168 |
-
mu_x01, mu_y01 = mu01
|
| 169 |
-
sig_x01, sig_y01 = sigma01
|
| 170 |
-
|
| 171 |
-
mu_x01 = float(max(0.0, min(1.0, mu_x01)))
|
| 172 |
-
mu_y01 = float(max(0.0, min(1.0, mu_y01)))
|
| 173 |
-
sig_x01 = float(sig_x01)
|
| 174 |
-
sig_y01 = float(sig_y01)
|
| 175 |
-
if sig_x01 <= 0 or sig_y01 <= 0:
|
| 176 |
-
raise ValueError("Sigma values (spread) must be positive.")
|
| 177 |
-
|
| 178 |
-
mu_x = mu_x01 * (grid_width - 1)
|
| 179 |
-
mu_y = mu_y01 * (grid_height - 1)
|
| 180 |
-
sigma_x = sig_x01 * (grid_width - 1)
|
| 181 |
-
sigma_y = sig_y01 * (grid_height - 1)
|
| 182 |
-
|
| 183 |
-
x = np.arange(0, grid_width)
|
| 184 |
-
y = np.arange(0, grid_height)
|
| 185 |
-
X, Y = np.meshgrid(x, y)
|
| 186 |
-
gaussian_2d = np.exp(-((X - mu_x) ** 2) / (2 * sigma_x ** 2) - ((Y - mu_y) ** 2) / (2 * sigma_y ** 2))
|
| 187 |
-
|
| 188 |
-
field = _normalize_to_unit(gaussian_2d.ravel())
|
| 189 |
-
grid_size = grid_width * grid_height
|
| 190 |
-
total_size = 4 * grid_size
|
| 191 |
-
initial_state = np.zeros(total_size)
|
| 192 |
-
initial_state[:grid_size] = field
|
| 193 |
-
return initial_state
|
| 194 |
-
|
| 195 |
-
# --- Simulation Code (from previous context) ---
|
| 196 |
-
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
|
| 197 |
-
qc = QuantumCircuit(n + j, name=name)
|
| 198 |
-
if j > 1: qc.cx(n + j - 1, range(n, n + j - 1))
|
| 199 |
-
if lam != 0: qc.p(lam, n + j - 1)
|
| 200 |
-
qc.h(n + j - 1)
|
| 201 |
-
if xgate and j > 1:
|
| 202 |
-
if isinstance(xgate, (list, tuple)):
|
| 203 |
-
for idx, flag in enumerate(xgate):
|
| 204 |
-
if flag: qc.x(n + idx)
|
| 205 |
-
elif xgate is True: qc.x(range(n, n + j - 1))
|
| 206 |
-
if j > 1:
|
| 207 |
-
mcrz = RZGate(theta).control(len(ctrl_state) + j - 1, ctrl_state="1" * (j - 1) + ctrl_state)
|
| 208 |
-
qc.append(mcrz, range(0, n + j))
|
| 209 |
-
else:
|
| 210 |
-
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state=ctrl_state)
|
| 211 |
-
qc.append(mcrz, range(0, n + j))
|
| 212 |
-
if xgate and j > 1:
|
| 213 |
-
if isinstance(xgate, (list, tuple)):
|
| 214 |
-
for idx, flag in enumerate(xgate):
|
| 215 |
-
if flag: qc.x(n + idx)
|
| 216 |
-
elif xgate is True: qc.x(range(n, n + j - 1))
|
| 217 |
-
qc.h(n + j - 1)
|
| 218 |
-
if lam != 0: qc.p(-lam, n + j - 1)
|
| 219 |
-
if j > 1: qc.cx(n + j - 1, range(n, n + j - 1))
|
| 220 |
-
return qc.to_gate(label=name)
|
| 221 |
-
|
| 222 |
-
def V1(nx, dt):
|
| 223 |
-
n = int(np.ceil(np.log2(nx)))
|
| 224 |
-
derivatives, blocks = QuantumRegister(2 * n), QuantumRegister(2)
|
| 225 |
-
qc = QuantumCircuit(derivatives, blocks)
|
| 226 |
-
qc.append(Wj_block(2, n, "0" * n, -dt, 0, xgate=True), list(derivatives[0:n]) + list(blocks[:]))
|
| 227 |
-
qc.append(Wj_block(3, n - 1, "1" * (n - 1), dt, 0, xgate=[0, 1]), list(derivatives[1:n]) + [derivatives[0]] + list(blocks[:]))
|
| 228 |
-
qc.append(Wj_block(1, n + 1, "0" * (n + 1), dt, 0, xgate=True), list(derivatives[n:2 * n]) + list(blocks[:]))
|
| 229 |
-
qc.append(Wj_block(2, n, "0" + "1" * (n - 1), -dt, 0, xgate=False), list(derivatives[n + 1:2 * n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 230 |
-
return qc
|
| 231 |
-
|
| 232 |
-
def V2(nx, dt):
|
| 233 |
-
n = int(np.ceil(np.log2(nx)))
|
| 234 |
-
derivatives, blocks = QuantumRegister(2 * n), QuantumRegister(2)
|
| 235 |
-
qc = QuantumCircuit(derivatives, blocks)
|
| 236 |
-
qc.append(Wj_block(2, 0, "", -2 * dt, -np.pi / 2, xgate=True), blocks[:])
|
| 237 |
-
for j in range(1, n + 1): qc.append(Wj_block(2 + j, 0, "", 2 * dt, -np.pi / 2, xgate=[1] * (j - 1) + [0, 1]), list(derivatives[0:j]) + list(blocks[:]))
|
| 238 |
-
qc.append(Wj_block(2, n, "0" * n, -dt, -np.pi / 2, xgate=True), list(derivatives[0:n]) + list(blocks[:]))
|
| 239 |
-
qc.append(Wj_block(2, n, "1" * n, 2 * dt, -np.pi / 2, xgate=True), list(derivatives[0:n]) + list(blocks[:]))
|
| 240 |
-
qc.append(Wj_block(3, n - 1, "1" * (n - 1), dt, -np.pi / 2, xgate=[0, 1]), list(derivatives[1:n]) + [derivatives[0]] + list(blocks[:]))
|
| 241 |
-
qc.append(Wj_block(1, 1, "0", 2 * dt, -np.pi / 2, xgate=False), blocks[:])
|
| 242 |
-
for j in range(1, n + 1): qc.append(Wj_block(1 + j, 1, "0", -2 * dt, -np.pi / 2, xgate=[1] * (j - 1)), [blocks[0]] + list(derivatives[n:n + j]) + [blocks[1]])
|
| 243 |
-
qc.append(Wj_block(1, n + 1, "0" * (n + 1), dt, -np.pi / 2, xgate=False), list(derivatives[n:2 * n]) + list(blocks[:]))
|
| 244 |
-
qc.append(Wj_block(1, n + 1, "0" + "1" * n, -2 * dt, -np.pi / 2, xgate=False), list(derivatives[n:2 * n]) + list(blocks[:]))
|
| 245 |
-
qc.append(Wj_block(2, n, "0" + "1" * (n - 1), -dt, -np.pi / 2, xgate=False), list(derivatives[n + 1:2 * n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 246 |
-
return qc
|
| 247 |
-
|
| 248 |
-
def run_sim(nx, na, R, initial_state, T, snapshot_dt=None, stop_check=None, progress_callback=None, print_callback=None):
|
| 249 |
-
"""
|
| 250 |
-
Runs the quantum simulation for electromagnetic scattering with fixed dt=0.1.
|
| 251 |
-
Captures frames only at user-defined snapshot times: [0, Δt, 2Δt, ..., ≤ T_eff],
|
| 252 |
-
always including t=0 and the final solver-aligned T (T_eff = floor(T/dt)*dt).
|
| 253 |
-
|
| 254 |
-
Returns:
|
| 255 |
-
frames (np.ndarray), snapshot_times (np.ndarray)
|
| 256 |
-
"""
|
| 257 |
-
def _log(msg):
|
| 258 |
-
if print_callback:
|
| 259 |
-
print_callback(msg)
|
| 260 |
-
else:
|
| 261 |
-
print(msg)
|
| 262 |
-
|
| 263 |
-
dt = 0.1
|
| 264 |
-
# Validate total time and compute solver-aligned end time
|
| 265 |
-
try:
|
| 266 |
-
T_val = float(T)
|
| 267 |
-
except Exception:
|
| 268 |
-
return np.array([]), np.array([])
|
| 269 |
-
if T_val <= 0:
|
| 270 |
-
return np.array([]), np.array([])
|
| 271 |
-
|
| 272 |
-
steps = int(np.floor(T_val / dt))
|
| 273 |
-
if steps <= 0:
|
| 274 |
-
return np.array([]), np.array([])
|
| 275 |
-
T_eff = steps * dt
|
| 276 |
-
|
| 277 |
-
# Determine snapshot Δt on solver grid
|
| 278 |
-
tol = 1e-12
|
| 279 |
-
if snapshot_dt is None:
|
| 280 |
-
snapshot_dt_val = dt
|
| 281 |
-
else:
|
| 282 |
-
try:
|
| 283 |
-
snapshot_dt_val = float(snapshot_dt)
|
| 284 |
-
except Exception:
|
| 285 |
-
snapshot_dt_val = dt
|
| 286 |
-
if snapshot_dt_val < dt - tol:
|
| 287 |
-
snapshot_dt_val = dt
|
| 288 |
-
k = max(1, int(round(snapshot_dt_val / dt)))
|
| 289 |
-
snapshot_dt_eff = k * dt
|
| 290 |
-
|
| 291 |
-
# Build requested snapshot times on solver grid
|
| 292 |
-
target_times = [0.0]
|
| 293 |
-
t = 0.0
|
| 294 |
-
while t + snapshot_dt_eff <= T_eff + tol:
|
| 295 |
-
t = round(t + snapshot_dt_eff, 12)
|
| 296 |
-
if t <= T_eff + tol:
|
| 297 |
-
target_times.append(min(t, T_eff))
|
| 298 |
-
if abs(target_times[-1] - T_eff) > tol:
|
| 299 |
-
target_times.append(T_eff)
|
| 300 |
-
|
| 301 |
-
# Setup circuit
|
| 302 |
-
nq = int(np.ceil(np.log2(nx)))
|
| 303 |
-
dp = 2 * R * np.pi / 2 ** na
|
| 304 |
-
p = np.arange(-R * np.pi, R * np.pi, step=dp)
|
| 305 |
-
fp = np.exp(-np.abs(p))
|
| 306 |
-
system, ancilla = QuantumRegister(2 * nq + 2), QuantumRegister(na)
|
| 307 |
-
qc = QuantumCircuit(system, ancilla)
|
| 308 |
-
qc.append(StatePreparation(initial_state), system)
|
| 309 |
-
qc.append(StatePreparation(fp / np.linalg.norm(fp)), ancilla)
|
| 310 |
-
expA1 = V1(nx, dt).to_gate()
|
| 311 |
-
expA2 = V2(nx, dt)
|
| 312 |
-
|
| 313 |
-
frames = []
|
| 314 |
-
# Capture initial frame at t=0
|
| 315 |
-
sv0 = np.real(Statevector(qc)).reshape(2 ** na, 2 ** (2 * nq + 2))
|
| 316 |
-
frames.append(sv0[2 ** (na - 1)])
|
| 317 |
-
next_idx = 1 # next target_times index to capture
|
| 318 |
-
|
| 319 |
-
_log(f"Starting simulation: T={T_eff:.2f}s, steps={steps}, snapshot_dt={snapshot_dt_eff:.2f}s")
|
| 320 |
-
|
| 321 |
-
for i in range(steps):
|
| 322 |
-
if stop_check and stop_check():
|
| 323 |
-
_log(f"Simulation interrupted at step {i}/{steps}")
|
| 324 |
-
break
|
| 325 |
-
# One solver step
|
| 326 |
-
qc.append(QFTGate(na), ancilla)
|
| 327 |
-
qc.x(ancilla[-1])
|
| 328 |
-
for j in range(na - 1):
|
| 329 |
-
qc.append(expA1.control().repeat(2 ** j), [ancilla[j]] + system[:])
|
| 330 |
-
qc.append(expA1.inverse().control(ctrl_state="0").repeat(2 ** (na - 1)), [ancilla[na - 1]] + system[:])
|
| 331 |
-
qc.append(expA2, system[:])
|
| 332 |
-
qc.x(ancilla[-1])
|
| 333 |
-
qc.append(QFTGate(na).inverse(), ancilla)
|
| 334 |
-
|
| 335 |
-
current_time = (i + 1) * dt
|
| 336 |
-
if next_idx < len(target_times) and abs(current_time - target_times[next_idx]) <= tol:
|
| 337 |
-
u = np.real(Statevector(qc)).reshape(2 ** na, 2 ** (2 * nq + 2))
|
| 338 |
-
frames.append(u[2 ** (na - 1)])
|
| 339 |
-
next_idx += 1
|
| 340 |
-
|
| 341 |
-
if progress_callback:
|
| 342 |
-
try:
|
| 343 |
-
progress = ((i + 1) / steps) * 100
|
| 344 |
-
progress_callback(progress)
|
| 345 |
-
except Exception:
|
| 346 |
-
pass
|
| 347 |
-
|
| 348 |
-
if progress_callback:
|
| 349 |
-
try:
|
| 350 |
-
progress_callback(100.0)
|
| 351 |
-
except Exception:
|
| 352 |
-
pass
|
| 353 |
-
|
| 354 |
-
_log("Simulation completed.")
|
| 355 |
-
|
| 356 |
-
# Ensure snapshot_times align with number of captured frames (covers early stop)
|
| 357 |
-
frames_arr = np.asarray(frames)
|
| 358 |
-
times_arr = np.asarray(target_times[: len(frames_arr)])
|
| 359 |
-
return frames_arr, times_arr
|
| 360 |
-
|
| 361 |
-
def create_impulse_preview_state(preview_n: int, pos01, sigma01: float = 0.02):
|
| 362 |
-
"""
|
| 363 |
-
Smooth delta-like preview on a unit square using a narrow Gaussian (sigma in [0,1]).
|
| 364 |
-
Preview-only helper, independent of simulation grid size (nx). Use this for the
|
| 365 |
-
Excitation preview; use the *_from_pos() variants for the actual simulation.
|
| 366 |
-
"""
|
| 367 |
-
try:
|
| 368 |
-
sx = float(sigma01) if sigma01 and sigma01 > 0 else 0.02
|
| 369 |
-
except Exception:
|
| 370 |
-
sx = 0.02
|
| 371 |
-
return create_gaussian_state_from_pos((int(preview_n), int(preview_n)), (float(pos01[0]), float(pos01[1])), (sx, sx))
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
##### Statevector Estimator Simulation Code Below #####
|
| 379 |
-
|
| 380 |
-
from .base_functions import *
|
| 381 |
-
|
| 382 |
-
def create_time_frames(total_time, snapshot_interval):
|
| 383 |
-
dt = 0.1
|
| 384 |
-
tol = 1e-9
|
| 385 |
-
try:
|
| 386 |
-
T_val = float(total_time)
|
| 387 |
-
except (ValueError, TypeError):
|
| 388 |
-
return []
|
| 389 |
-
if T_val <= 0:
|
| 390 |
-
return []
|
| 391 |
-
steps = int(np.floor(T_val / dt))
|
| 392 |
-
if steps <= 0:
|
| 393 |
-
return [0.0]
|
| 394 |
-
T_eff = steps * dt
|
| 395 |
-
try:
|
| 396 |
-
snapshot_dt_val = float(snapshot_interval)
|
| 397 |
-
except (ValueError, TypeError):
|
| 398 |
-
snapshot_dt_val = dt
|
| 399 |
-
if snapshot_dt_val < dt:
|
| 400 |
-
snapshot_dt_val = dt
|
| 401 |
-
k = max(1, int(round(snapshot_dt_val / dt)))
|
| 402 |
-
snapshot_dt_eff = k * dt
|
| 403 |
-
times = np.arange(0, T_eff + tol, snapshot_dt_eff)
|
| 404 |
-
if abs(times[-1] - T_eff) > tol:
|
| 405 |
-
times = np.append(times, T_eff)
|
| 406 |
-
times = np.round(times, 12)
|
| 407 |
-
unique_times = []
|
| 408 |
-
for t in times:
|
| 409 |
-
if not unique_times or abs(t - unique_times[-1]) > tol:
|
| 410 |
-
unique_times.append(float(t))
|
| 411 |
-
return unique_times
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
def run_sve(field, x, y, T, snapshot_time, nx, initial_state, impulse_pos, progress_callback=None, print_callback=None):
|
| 416 |
-
"""Statevector Estimator for time-series field values.
|
| 417 |
-
|
| 418 |
-
Supports both single-point and multi-point modes.
|
| 419 |
-
|
| 420 |
-
- Single-point (backward compatible): x, y are integers; returns list[float].
|
| 421 |
-
- Multi-point: x is a list/tuple of (ix, iy) integer pairs and y is None; returns dict[(ix,iy) -> list[float]].
|
| 422 |
-
"""
|
| 423 |
-
def _log(msg):
|
| 424 |
-
if print_callback:
|
| 425 |
-
print_callback(msg)
|
| 426 |
-
else:
|
| 427 |
-
print(msg)
|
| 428 |
-
|
| 429 |
-
na = 1
|
| 430 |
-
dt = 0.1
|
| 431 |
-
R = 4
|
| 432 |
-
nq = int(np.ceil(np.log2(nx)))
|
| 433 |
-
|
| 434 |
-
# Normalize monitor points input
|
| 435 |
-
if isinstance(x, (list, tuple)) and y is None:
|
| 436 |
-
points = [tuple(map(int, pt)) for pt in x]
|
| 437 |
-
multi = True
|
| 438 |
-
else:
|
| 439 |
-
points = [(int(x), int(y))]
|
| 440 |
-
multi = False
|
| 441 |
-
|
| 442 |
-
xref, yref = impulse_pos
|
| 443 |
-
|
| 444 |
-
offset = 0
|
| 445 |
-
grid_dims = (nx, nx)
|
| 446 |
-
initial_state = create_impulse_state(grid_dims, impulse_pos)
|
| 447 |
-
|
| 448 |
-
dp = 2 * R * np.pi / 2**na
|
| 449 |
-
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 450 |
-
fp = np.exp(-np.abs(p))
|
| 451 |
-
norm = np.linalg.norm(fp)
|
| 452 |
-
|
| 453 |
-
time_frames = create_time_frames(T, snapshot_time)
|
| 454 |
-
total_frames = len(time_frames)
|
| 455 |
-
|
| 456 |
-
_log(f"Starting QPU simulation: T={T}s, frames={total_frames}, points={len(points)}")
|
| 457 |
-
|
| 458 |
-
# Prepare outputs
|
| 459 |
-
if multi:
|
| 460 |
-
series_by_point = { (px, py): [] for (px, py) in points }
|
| 461 |
-
else:
|
| 462 |
-
series_single = []
|
| 463 |
-
|
| 464 |
-
for idx, time in enumerate(time_frames):
|
| 465 |
-
steps = int(math.ceil(time / dt))
|
| 466 |
-
# Reference Ez field at impulse location for sign
|
| 467 |
-
Eref = Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref='Ez')
|
| 468 |
-
|
| 469 |
-
for (px, py) in points:
|
| 470 |
-
circ_magnitude = circ_for_magnitude(field, px, py, nx, na, R, dt, initial_state, steps)
|
| 471 |
-
magnitude = get_absolute_field_value(circ_magnitude, nq, na, offset, norm)
|
| 472 |
-
|
| 473 |
-
if field == 'Ez' and px == xref and py == yref:
|
| 474 |
-
Field_value = -magnitude if Eref < 0 else magnitude
|
| 475 |
-
else:
|
| 476 |
-
circsum, circdiff = circuits_for_sign(field, px, py, nx, na, dt, R, initial_state, steps, xref, yref, field_ref='Ez')
|
| 477 |
-
sign = get_relative_sign(circsum, circdiff, nq, na)
|
| 478 |
-
if (sign == 'same' and Eref > 0) or (sign == 'different' and Eref < 0):
|
| 479 |
-
Field_value = magnitude
|
| 480 |
-
else:
|
| 481 |
-
Field_value = -magnitude
|
| 482 |
-
|
| 483 |
-
if multi:
|
| 484 |
-
series_by_point[(px, py)].append(Field_value)
|
| 485 |
-
else:
|
| 486 |
-
series_single.append(Field_value)
|
| 487 |
-
|
| 488 |
-
if progress_callback:
|
| 489 |
-
progress_callback((idx + 1) / total_frames * 100)
|
| 490 |
-
|
| 491 |
-
_log("Statevector Estimator simulation completed.")
|
| 492 |
-
|
| 493 |
-
return series_by_point if multi else series_single
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|