Spaces:
Paused
Paused
harishaseebat92
commited on
Commit
·
f106663
1
Parent(s):
84cdd4c
added utils folder
Browse files- utils/EBU_Quantum +1 -0
- utils/adapt-aqc +1 -0
- utils/base_functions.py +443 -0
- utils/base_ionq.py +458 -0
- utils/delta_impulse_generator.py +493 -0
- wq +6 -0
utils/EBU_Quantum
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 8b4d693379b544ea9d3b4163189ac46fe52887bb
|
utils/adapt-aqc
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit da9bf5895b1b694b167f7eaecae358b670ea29d9
|
utils/base_functions.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import scipy.sparse as sp
|
| 3 |
+
import math
|
| 4 |
+
import random
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from scipy.special import jn
|
| 7 |
+
from scipy.sparse import identity, csr_matrix, kron, diags, eye
|
| 8 |
+
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
| 9 |
+
from qiskit.circuit.library import MCXGate, MCPhaseGate, RXGate, CRXGate, QFTGate, StatePreparation, PauliEvolutionGate, RZGate
|
| 10 |
+
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator, Pauli
|
| 11 |
+
from scipy.linalg import expm
|
| 12 |
+
# from tools import *
|
| 13 |
+
from qiskit.qasm3 import dumps # QASM 3 exporter
|
| 14 |
+
from qiskit.qasm3 import loads
|
| 15 |
+
from qiskit.circuit.library import QFT
|
| 16 |
+
from qiskit.primitives import StatevectorEstimator
|
| 17 |
+
from qiskit import transpile
|
| 18 |
+
from qiskit_addon_aqc_tensor.simulation import tensornetwork_from_circuit, apply_circuit_to_state, compute_overlap
|
| 19 |
+
from qiskit_aer import AerSimulator
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
simulator_settings = AerSimulator(
|
| 23 |
+
method="matrix_product_state",
|
| 24 |
+
matrix_product_state_max_bond_dimension=100,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def Wj(j, theta, lam, name='Wj', xgate=False):
|
| 28 |
+
if not xgate:
|
| 29 |
+
name = f' $W_{j}$ '
|
| 30 |
+
qc=QuantumCircuit(j, name=name)
|
| 31 |
+
|
| 32 |
+
if j > 1:
|
| 33 |
+
qc.cx(j-1, range(j-1))
|
| 34 |
+
if lam != 0:
|
| 35 |
+
qc.p(lam, j-1)
|
| 36 |
+
qc.h(j-1)
|
| 37 |
+
if xgate:
|
| 38 |
+
qc.x(range(j-1))
|
| 39 |
+
|
| 40 |
+
# the multicontrolled rz gate
|
| 41 |
+
# it will be decomposed in qiskit
|
| 42 |
+
if j > 1:
|
| 43 |
+
qc.mcrz(theta, range(j-1), j-1)
|
| 44 |
+
else:
|
| 45 |
+
qc.rz(theta, j-1)
|
| 46 |
+
|
| 47 |
+
if xgate:
|
| 48 |
+
qc.x(range(j-1))
|
| 49 |
+
qc.h(j-1)
|
| 50 |
+
if lam != 0:
|
| 51 |
+
qc.p(-lam, j-1)
|
| 52 |
+
if j > 1:
|
| 53 |
+
qc.cx(j-1, range(j-1))
|
| 54 |
+
|
| 55 |
+
return qc
|
| 56 |
+
|
| 57 |
+
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
|
| 58 |
+
if not xgate:
|
| 59 |
+
name = f' $W_{j}_block$ '
|
| 60 |
+
qc=QuantumCircuit(n + j, name=name)
|
| 61 |
+
|
| 62 |
+
if j > 1:
|
| 63 |
+
qc.cx(n + j-1, range(n, n+j-1))
|
| 64 |
+
if lam != 0:
|
| 65 |
+
qc.p(lam, n + j -1)
|
| 66 |
+
qc.h(n + j -1)
|
| 67 |
+
|
| 68 |
+
if xgate and j>1:
|
| 69 |
+
if isinstance(xgate, (list, tuple)): # selective application
|
| 70 |
+
for idx, flag in enumerate(xgate):
|
| 71 |
+
if flag: # only apply where flag == 1
|
| 72 |
+
qc.x(n + idx)
|
| 73 |
+
elif xgate is True: # apply to all
|
| 74 |
+
qc.x(range(n, n+j-1))
|
| 75 |
+
|
| 76 |
+
# the multicontrolled rz gate
|
| 77 |
+
# it will be decomposed in qiskit
|
| 78 |
+
if j > 1:
|
| 79 |
+
mcrz = RZGate(theta).control(len(ctrl_state) + j-1, ctrl_state = "1"*(j-1)+ctrl_state)
|
| 80 |
+
qc.append(mcrz, range(0, n + j))
|
| 81 |
+
else:
|
| 82 |
+
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state = ctrl_state)
|
| 83 |
+
qc.append(mcrz, range(0, n+j))
|
| 84 |
+
|
| 85 |
+
if xgate and j>1:
|
| 86 |
+
if isinstance(xgate, (list, tuple)): # selective application
|
| 87 |
+
for idx, flag in enumerate(xgate):
|
| 88 |
+
if flag: # only apply where flag == 1
|
| 89 |
+
qc.x(n + idx)
|
| 90 |
+
elif xgate is True: # apply to all
|
| 91 |
+
qc.x(range(n, n+j-1))
|
| 92 |
+
|
| 93 |
+
qc.h(n+ j-1)
|
| 94 |
+
if lam != 0:
|
| 95 |
+
qc.p(-lam, n + j-1)
|
| 96 |
+
if j > 1:
|
| 97 |
+
qc.cx(n + j-1, range(n, n +j-1))
|
| 98 |
+
|
| 99 |
+
return qc.to_gate(label=name)
|
| 100 |
+
|
| 101 |
+
def V1(nx, dt, name = "V1"):
|
| 102 |
+
n = int(np.ceil(np.log2(nx)))
|
| 103 |
+
|
| 104 |
+
derivatives = QuantumRegister(2*n)
|
| 105 |
+
blocks = QuantumRegister(2)
|
| 106 |
+
|
| 107 |
+
qc = QuantumCircuit(derivatives, blocks)
|
| 108 |
+
|
| 109 |
+
W1 = Wj_block(2, n, "0"*n, -dt , 0, xgate=True)
|
| 110 |
+
qc.append(W1, list(derivatives[0:n])+list(blocks[:]))
|
| 111 |
+
|
| 112 |
+
# qc.barrier()
|
| 113 |
+
|
| 114 |
+
W2 = Wj_block(3, n-1, "1"*(n-1), dt , 0, xgate=[0,1])
|
| 115 |
+
qc.append(W2, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 116 |
+
|
| 117 |
+
# qc.barrier()
|
| 118 |
+
|
| 119 |
+
W3 = Wj_block(1, n+1, "0"*(n+1), dt , 0, xgate=False)
|
| 120 |
+
qc.append(W3, list(derivatives[n:2*n])+list(blocks[:]))
|
| 121 |
+
|
| 122 |
+
# qc.barrier()
|
| 123 |
+
|
| 124 |
+
W4 = Wj_block(2, n, "0"+"1"*(n-1), -dt , 0, xgate=False)
|
| 125 |
+
qc.append(W4, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 126 |
+
|
| 127 |
+
return qc
|
| 128 |
+
|
| 129 |
+
def V2(nx, dt, name = "V2"):
|
| 130 |
+
n = int(np.ceil(np.log2(nx)))
|
| 131 |
+
|
| 132 |
+
derivatives = QuantumRegister(2*n)
|
| 133 |
+
blocks = QuantumRegister(2)
|
| 134 |
+
|
| 135 |
+
qc = QuantumCircuit(derivatives, blocks)
|
| 136 |
+
|
| 137 |
+
W1 = Wj_block(2, 0, "", -2*dt , -np.pi/2, xgate=True)
|
| 138 |
+
qc.append(W1, list(blocks[:]))
|
| 139 |
+
|
| 140 |
+
# qc.barrier()
|
| 141 |
+
|
| 142 |
+
for j in range(1, n+1):
|
| 143 |
+
W2 = Wj_block(2+j, 0, "", 2*dt , -np.pi/2, xgate=[1]*(j-1)+[0,1])
|
| 144 |
+
qc.append(W2, list(derivatives[0:j])+list(blocks[:]))
|
| 145 |
+
|
| 146 |
+
# qc.barrier()
|
| 147 |
+
|
| 148 |
+
W3 = Wj_block(2, n, "0"*n, -dt , -np.pi/2, xgate=True)
|
| 149 |
+
qc.append(W3, list(derivatives[0:n])+list(blocks[:]))
|
| 150 |
+
|
| 151 |
+
# qc.barrier()
|
| 152 |
+
|
| 153 |
+
W4 = Wj_block(2, n, "1"*n, 2*dt , -np.pi/2, xgate=True)
|
| 154 |
+
qc.append(W4, list(derivatives[0:n])+list(blocks[:]))
|
| 155 |
+
|
| 156 |
+
# qc.barrier()
|
| 157 |
+
|
| 158 |
+
W5 = Wj_block(3, n-1, "1"*(n-1), dt , -np.pi/2, xgate=[0,1])
|
| 159 |
+
qc.append(W5, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 160 |
+
|
| 161 |
+
# qc.barrier()
|
| 162 |
+
|
| 163 |
+
W6 = Wj_block(1, 1, "0", 2*dt , -np.pi/2, xgate=False)
|
| 164 |
+
qc.append(W6, list(blocks[:]))
|
| 165 |
+
|
| 166 |
+
# qc.barrier()
|
| 167 |
+
|
| 168 |
+
for j in range(1, n+1):
|
| 169 |
+
W7 = Wj_block(1+j, 1, "0", -2*dt , -np.pi/2, xgate=[1]*(j-1))
|
| 170 |
+
qc.append(W7, [blocks[0]]+list(derivatives[n:n+j])+[blocks[1]])
|
| 171 |
+
|
| 172 |
+
# qc.barrier()
|
| 173 |
+
|
| 174 |
+
W8 = Wj_block(1, n+1, "0"*(n+1), dt , -np.pi/2, xgate=False)
|
| 175 |
+
qc.append(W8, list(derivatives[n:2*n])+list(blocks[:]))
|
| 176 |
+
|
| 177 |
+
# qc.barrier()
|
| 178 |
+
|
| 179 |
+
W9 = Wj_block(1, n+1, "0"+"1"*(n), -2*dt , -np.pi/2, xgate=False)
|
| 180 |
+
qc.append(W9, list(derivatives[n:2*n])+list(blocks[:]))
|
| 181 |
+
|
| 182 |
+
# qc.barrier()
|
| 183 |
+
|
| 184 |
+
W10 = Wj_block(2, n, "0"+"1"*(n-1), -dt , -np.pi/2, xgate=False)
|
| 185 |
+
qc.append(W10, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 186 |
+
|
| 187 |
+
# qc.barrier()
|
| 188 |
+
|
| 189 |
+
return qc
|
| 190 |
+
|
| 191 |
+
def schro(nx, na, R, dt, initial_state, steps):
|
| 192 |
+
|
| 193 |
+
nq = int(np.ceil(np.log2(nx)))
|
| 194 |
+
|
| 195 |
+
# warped phase transformation
|
| 196 |
+
dp = 2 * R * np.pi / 2**na
|
| 197 |
+
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 198 |
+
fp = np.exp(-np.abs(p))
|
| 199 |
+
norm1 = np.linalg.norm(fp[2**(na-1):]) # norm of p>=0
|
| 200 |
+
|
| 201 |
+
# construct quantum circuit
|
| 202 |
+
system = QuantumRegister(2*nq+2, name='system')
|
| 203 |
+
ancilla = QuantumRegister(na, name='ancilla')
|
| 204 |
+
qc = QuantumCircuit(system, ancilla)
|
| 205 |
+
|
| 206 |
+
# initialization
|
| 207 |
+
prep = StatePreparation(initial_state)
|
| 208 |
+
anc_prep = StatePreparation(fp / np.linalg.norm(fp))
|
| 209 |
+
|
| 210 |
+
qc.append(prep, system)
|
| 211 |
+
# qc.append(anc_prep, ancilla)
|
| 212 |
+
qc.initialize(fp / np.linalg.norm(fp), ancilla)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# QFT
|
| 216 |
+
qc.append(QFTGate(na), ancilla)
|
| 217 |
+
qc.x(ancilla[-1])
|
| 218 |
+
|
| 219 |
+
A1 = V1(nx, dt, name = "V1").to_gate()
|
| 220 |
+
A2 = V2(nx, dt, name = "V2")
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# Hamiltonian simulation for Nt steps
|
| 224 |
+
for i in range(steps):
|
| 225 |
+
# circuit for one step
|
| 226 |
+
for j in range(na):
|
| 227 |
+
# repeat controlled H1 for 2**j times
|
| 228 |
+
qc.append(A1.control().repeat(2**j), [ancilla[j]] + system[:])
|
| 229 |
+
|
| 230 |
+
# qc.append(A1.inverse().control(ctrl_state = "0").repeat(2**(na-1)), [ancilla[na-1]] + system[:])
|
| 231 |
+
qc.append(A1.inverse().repeat(2**(na-1)), system[:])
|
| 232 |
+
qc.append(A2, system[:])
|
| 233 |
+
|
| 234 |
+
# rearrange eta
|
| 235 |
+
qc.x(ancilla[-1])
|
| 236 |
+
qc.append(QFTGate(na).inverse(), ancilla)
|
| 237 |
+
|
| 238 |
+
return qc
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def circ_for_magnitude(field, x, y, nx, na, R, dt, initial_state, steps):
|
| 243 |
+
|
| 244 |
+
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 245 |
+
naimark = QuantumRegister(1, name='Naimark')
|
| 246 |
+
qc.add_register(naimark)
|
| 247 |
+
|
| 248 |
+
if field == 'Ez':
|
| 249 |
+
index = nx * y + x
|
| 250 |
+
elif field == 'Hx':
|
| 251 |
+
index = 2*nx*nx + nx * y + x
|
| 252 |
+
else:
|
| 253 |
+
index = 3*nx*nx + nx * y + x
|
| 254 |
+
|
| 255 |
+
index_bin = format(index, f'0{qc.num_qubits-2}b')
|
| 256 |
+
ctrl_state = '1' + index_bin
|
| 257 |
+
ctrl_qubits = qc.qubits[:-1]
|
| 258 |
+
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state)
|
| 259 |
+
|
| 260 |
+
return qc
|
| 261 |
+
|
| 262 |
+
def circuits_for_sign(field, x, y, nx, na, dt, R, initial_state, steps, xref, yref, field_ref = 'Ez'):
|
| 263 |
+
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 264 |
+
|
| 265 |
+
naimark = QuantumRegister(1, name='Naimark')
|
| 266 |
+
qc.add_register(naimark)
|
| 267 |
+
|
| 268 |
+
if field == 'Ez':
|
| 269 |
+
index = nx * y + x
|
| 270 |
+
elif field == 'Hx':
|
| 271 |
+
index = 2*nx*nx + nx * y + x
|
| 272 |
+
else:
|
| 273 |
+
index = 3*nx*nx + nx * y + x
|
| 274 |
+
|
| 275 |
+
if field_ref == 'Ez':
|
| 276 |
+
index_ref = nx * yref + xref
|
| 277 |
+
elif field_ref == 'Hx':
|
| 278 |
+
index_ref = 2*nx*nx + nx * yref + xref
|
| 279 |
+
else:
|
| 280 |
+
index_ref = 3*nx*nx + nx * yref + xref
|
| 281 |
+
|
| 282 |
+
index_bin = [(index >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 283 |
+
index_ref_bin = [(index_ref >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 284 |
+
index_bin.append(1)
|
| 285 |
+
index_ref_bin.append(1)
|
| 286 |
+
|
| 287 |
+
#Convert reference bitstring to 00000
|
| 288 |
+
for i, bit in enumerate(index_ref_bin):
|
| 289 |
+
if bit == 1:
|
| 290 |
+
qc.x(i)
|
| 291 |
+
|
| 292 |
+
d_bits = [b ^ r for b, r in zip(index_ref_bin, index_bin)]
|
| 293 |
+
control = d_bits.index(1)
|
| 294 |
+
|
| 295 |
+
#Convert the other bitstring to 0001000
|
| 296 |
+
for target, bit in enumerate(d_bits):
|
| 297 |
+
if bit == 1 and target != control:
|
| 298 |
+
qc.cx(control, target)
|
| 299 |
+
qc.h(control)
|
| 300 |
+
|
| 301 |
+
ctrl_state_sum = '0'*(qc.num_qubits-1)
|
| 302 |
+
ctrl_state_diff = '0'*(qc.num_qubits-1-control-1)+'1'+'0'*(control)
|
| 303 |
+
|
| 304 |
+
qcdiff = qc.copy()
|
| 305 |
+
|
| 306 |
+
ctrl_qubits = qc.qubits[:-1]
|
| 307 |
+
|
| 308 |
+
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_sum)
|
| 309 |
+
qcdiff.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_diff)
|
| 310 |
+
|
| 311 |
+
return qc, qcdiff
|
| 312 |
+
|
| 313 |
+
def get_absolute_field_value(qc, nq, na, offset, norm):
|
| 314 |
+
|
| 315 |
+
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 316 |
+
observable = SparsePauliOp(Pauli(pauli_label))
|
| 317 |
+
########################################################################################
|
| 318 |
+
estimator = StatevectorEstimator()
|
| 319 |
+
|
| 320 |
+
# === Run Estimator (no parameters needed) ===
|
| 321 |
+
pub = (qc, observable)
|
| 322 |
+
job = estimator.run([pub])
|
| 323 |
+
result = job.result()[0]
|
| 324 |
+
z_exp = result.data.evs.item()
|
| 325 |
+
#########################################################################################
|
| 326 |
+
# === Compute projector expectation ===
|
| 327 |
+
pi_expect = (1 - z_exp) / 2
|
| 328 |
+
|
| 329 |
+
Absolute_value = norm*np.sqrt(pi_expect)-offset
|
| 330 |
+
|
| 331 |
+
return Absolute_value
|
| 332 |
+
|
| 333 |
+
def get_relative_sign(qc, qcdiff, nq, na):
|
| 334 |
+
|
| 335 |
+
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 336 |
+
observable = SparsePauliOp(Pauli(pauli_label))
|
| 337 |
+
########################################################################################
|
| 338 |
+
estimator = StatevectorEstimator()
|
| 339 |
+
|
| 340 |
+
# === Run Estimator ===
|
| 341 |
+
pub = (qc, observable)
|
| 342 |
+
job = estimator.run([pub])
|
| 343 |
+
result = job.result()[0]
|
| 344 |
+
z_exp = result.data.evs.item()
|
| 345 |
+
|
| 346 |
+
pub_diff = (qcdiff, observable)
|
| 347 |
+
job_diff = estimator.run([pub_diff])
|
| 348 |
+
result_diff = job_diff.result()[0]
|
| 349 |
+
z_exp_diff = result_diff.data.evs.item()
|
| 350 |
+
#########################################################################################
|
| 351 |
+
# === Compute projector expectation ===
|
| 352 |
+
pi_expect_sum = (1 - z_exp) / 2
|
| 353 |
+
pi_expect_diff = (1 - z_exp_diff) / 2
|
| 354 |
+
|
| 355 |
+
relative_sign = 'same' if pi_expect_sum >= pi_expect_diff else 'different'
|
| 356 |
+
|
| 357 |
+
return relative_sign
|
| 358 |
+
|
| 359 |
+
def Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref = 'Ez'):
|
| 360 |
+
if steps < 31:
|
| 361 |
+
offset = 1
|
| 362 |
+
else :
|
| 363 |
+
offset = 0.15
|
| 364 |
+
deltastate = np.zeros(4*nx*nx)
|
| 365 |
+
# deltastate[nx*nx//2+nx//2:nx*nx//2+nx//2+1] = 1
|
| 366 |
+
deltastate[nx*yref+xref] = 1
|
| 367 |
+
deltastate[0:nx*nx] = deltastate[0:nx*nx] + offset
|
| 368 |
+
norm1 = np.linalg.norm(deltastate)
|
| 369 |
+
initial_state = deltastate/norm1
|
| 370 |
+
|
| 371 |
+
dp = 2 * R * np.pi / 2**na
|
| 372 |
+
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 373 |
+
fp = np.exp(-np.abs(p))
|
| 374 |
+
norm2 = np.linalg.norm(fp)
|
| 375 |
+
norm = norm1 * norm2
|
| 376 |
+
|
| 377 |
+
qc = circ_for_magnitude(field_ref, xref, yref, nx, na, R, dt, initial_state, steps)
|
| 378 |
+
|
| 379 |
+
Ezref = get_absolute_field_value(qc, nq, na, offset, norm)
|
| 380 |
+
|
| 381 |
+
return Ezref
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def transpile_circ(circ, basis_gates=None):
|
| 385 |
+
"""
|
| 386 |
+
Transpile the circuit to the specified basis gates.
|
| 387 |
+
"""
|
| 388 |
+
if basis_gates is None:
|
| 389 |
+
basis_gates = ['z', 'y', 'x', 'sdg', 's', 'h', 'rz', 'ry', 'rx', 'ecr', 'cz', 'cx']
|
| 390 |
+
|
| 391 |
+
transpiled_circ = transpile(circ, basis_gates=basis_gates)
|
| 392 |
+
return transpiled_circ
|
| 393 |
+
|
| 394 |
+
def compute_fidelity(circ1, circ2):
|
| 395 |
+
|
| 396 |
+
circ_1 = tensornetwork_from_circuit(transpile_circ(circ1), simulator_settings)
|
| 397 |
+
circ_2 = tensornetwork_from_circuit(transpile_circ(circ2), simulator_settings)
|
| 398 |
+
fidelity = abs(compute_overlap(circ_1, circ_2))**2
|
| 399 |
+
|
| 400 |
+
return fidelity
|
| 401 |
+
|
| 402 |
+
# def create_impulse_state(grid_dims, impulse_pos):
|
| 403 |
+
# """
|
| 404 |
+
# Creates an initial state vector with a single delta impulse at a specified grid position.
|
| 405 |
+
|
| 406 |
+
# The 2D grid is flattened into a 1D vector in row-major order, and this
|
| 407 |
+
# vector is then padded to match the full simulation state space size (4x).
|
| 408 |
+
|
| 409 |
+
# Args:
|
| 410 |
+
# grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
|
| 411 |
+
# For your original code, this would be (nx, nx).
|
| 412 |
+
# impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
|
| 413 |
+
# Coordinates are 0-indexed.
|
| 414 |
+
|
| 415 |
+
# Returns:
|
| 416 |
+
# numpy.ndarray: The full, padded initial state vector with a single 1.
|
| 417 |
+
|
| 418 |
+
# Raises:
|
| 419 |
+
# ValueError: If the impulse position is outside the grid dimensions.
|
| 420 |
+
# """
|
| 421 |
+
# grid_width, grid_height = grid_dims
|
| 422 |
+
# impulse_x, impulse_y = impulse_pos
|
| 423 |
+
|
| 424 |
+
# # --- Input Validation ---
|
| 425 |
+
# # Ensure the requested impulse position is actually on the grid.
|
| 426 |
+
# if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
|
| 427 |
+
# raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
|
| 428 |
+
# f"grid dimensions ({grid_width}x{grid_height}).")
|
| 429 |
+
|
| 430 |
+
# # --- 1. Calculate the 1D Array Index ---
|
| 431 |
+
# # Convert the (x, y) coordinate to a single index in a flattened 1D array.
|
| 432 |
+
# # The formula for row-major order is: index = y_coord * width + x_coord
|
| 433 |
+
# flat_index = impulse_y * grid_width + impulse_x
|
| 434 |
+
|
| 435 |
+
# # --- 2. Create the Full, Padded State Vector ---
|
| 436 |
+
# grid_size = grid_width * grid_height
|
| 437 |
+
# total_size = 4 * grid_size # The simulation space is 4x the grid size.
|
| 438 |
+
# initial_state = np.zeros(total_size)
|
| 439 |
+
|
| 440 |
+
# # --- 3. Set the Delta Impulse ---
|
| 441 |
+
# initial_state[flat_index] = 1
|
| 442 |
+
|
| 443 |
+
# return initial_state
|
utils/base_ionq.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import scipy.sparse as sp
|
| 3 |
+
import math
|
| 4 |
+
import random
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from scipy.special import jn
|
| 7 |
+
from scipy.sparse import identity, csr_matrix, kron, diags, eye
|
| 8 |
+
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
| 9 |
+
from qiskit.circuit.library import MCXGate, MCPhaseGate, RXGate, CRXGate, QFTGate, StatePreparation, PauliEvolutionGate, RZGate
|
| 10 |
+
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator, Pauli
|
| 11 |
+
from scipy.linalg import expm
|
| 12 |
+
# from tools import *
|
| 13 |
+
from qiskit.qasm3 import dumps # QASM 3 exporter
|
| 14 |
+
from qiskit.qasm3 import loads
|
| 15 |
+
from qiskit.circuit.library import QFT
|
| 16 |
+
from qiskit.primitives import StatevectorEstimator
|
| 17 |
+
from qiskit import transpile
|
| 18 |
+
from qiskit_addon_aqc_tensor.simulation import tensornetwork_from_circuit, apply_circuit_to_state, compute_overlap
|
| 19 |
+
from qiskit_aer import AerSimulator
|
| 20 |
+
from qiskit_ionq import IonQProvider
|
| 21 |
+
import os
|
| 22 |
+
my_api_key = os.getenv("IONQ_API_KEY")
|
| 23 |
+
from qiskit_ibm_runtime import QiskitRuntimeService, EstimatorV2 as Estimator
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# provider = IonQProvider()
|
| 29 |
+
|
| 30 |
+
api_token = "SgUkiDq1r2bVEadyiUfvtuxQ03Qci6UW"
|
| 31 |
+
provider = IonQProvider(api_token)
|
| 32 |
+
ionq_backend = provider.get_backend("simulator")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
simulator_settings = AerSimulator(
|
| 38 |
+
method="matrix_product_state",
|
| 39 |
+
matrix_product_state_max_bond_dimension=100,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
def Wj(j, theta, lam, name='Wj', xgate=False):
|
| 43 |
+
if not xgate:
|
| 44 |
+
name = f' $W_{j}$ '
|
| 45 |
+
qc=QuantumCircuit(j, name=name)
|
| 46 |
+
|
| 47 |
+
if j > 1:
|
| 48 |
+
qc.cx(j-1, range(j-1))
|
| 49 |
+
if lam != 0:
|
| 50 |
+
qc.p(lam, j-1)
|
| 51 |
+
qc.h(j-1)
|
| 52 |
+
if xgate:
|
| 53 |
+
qc.x(range(j-1))
|
| 54 |
+
|
| 55 |
+
# the multicontrolled rz gate
|
| 56 |
+
# it will be decomposed in qiskit
|
| 57 |
+
if j > 1:
|
| 58 |
+
qc.mcrz(theta, range(j-1), j-1)
|
| 59 |
+
else:
|
| 60 |
+
qc.rz(theta, j-1)
|
| 61 |
+
|
| 62 |
+
if xgate:
|
| 63 |
+
qc.x(range(j-1))
|
| 64 |
+
qc.h(j-1)
|
| 65 |
+
if lam != 0:
|
| 66 |
+
qc.p(-lam, j-1)
|
| 67 |
+
if j > 1:
|
| 68 |
+
qc.cx(j-1, range(j-1))
|
| 69 |
+
|
| 70 |
+
return qc
|
| 71 |
+
|
| 72 |
+
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
|
| 73 |
+
if not xgate:
|
| 74 |
+
name = f' $W_{j}_block$ '
|
| 75 |
+
qc=QuantumCircuit(n + j, name=name)
|
| 76 |
+
|
| 77 |
+
if j > 1:
|
| 78 |
+
qc.cx(n + j-1, range(n, n+j-1))
|
| 79 |
+
if lam != 0:
|
| 80 |
+
qc.p(lam, n + j -1)
|
| 81 |
+
qc.h(n + j -1)
|
| 82 |
+
|
| 83 |
+
if xgate and j>1:
|
| 84 |
+
if isinstance(xgate, (list, tuple)): # selective application
|
| 85 |
+
for idx, flag in enumerate(xgate):
|
| 86 |
+
if flag: # only apply where flag == 1
|
| 87 |
+
qc.x(n + idx)
|
| 88 |
+
elif xgate is True: # apply to all
|
| 89 |
+
qc.x(range(n, n+j-1))
|
| 90 |
+
|
| 91 |
+
# the multicontrolled rz gate
|
| 92 |
+
# it will be decomposed in qiskit
|
| 93 |
+
if j > 1:
|
| 94 |
+
mcrz = RZGate(theta).control(len(ctrl_state) + j-1, ctrl_state = "1"*(j-1)+ctrl_state)
|
| 95 |
+
qc.append(mcrz, range(0, n + j))
|
| 96 |
+
else:
|
| 97 |
+
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state = ctrl_state)
|
| 98 |
+
qc.append(mcrz, range(0, n+j))
|
| 99 |
+
|
| 100 |
+
if xgate and j>1:
|
| 101 |
+
if isinstance(xgate, (list, tuple)): # selective application
|
| 102 |
+
for idx, flag in enumerate(xgate):
|
| 103 |
+
if flag: # only apply where flag == 1
|
| 104 |
+
qc.x(n + idx)
|
| 105 |
+
elif xgate is True: # apply to all
|
| 106 |
+
qc.x(range(n, n+j-1))
|
| 107 |
+
|
| 108 |
+
qc.h(n+ j-1)
|
| 109 |
+
if lam != 0:
|
| 110 |
+
qc.p(-lam, n + j-1)
|
| 111 |
+
if j > 1:
|
| 112 |
+
qc.cx(n + j-1, range(n, n +j-1))
|
| 113 |
+
|
| 114 |
+
return qc.to_gate(label=name)
|
| 115 |
+
|
| 116 |
+
def V1(nx, dt, name = "V1"):
|
| 117 |
+
n = int(np.ceil(np.log2(nx)))
|
| 118 |
+
|
| 119 |
+
derivatives = QuantumRegister(2*n)
|
| 120 |
+
blocks = QuantumRegister(2)
|
| 121 |
+
|
| 122 |
+
qc = QuantumCircuit(derivatives, blocks)
|
| 123 |
+
|
| 124 |
+
W1 = Wj_block(2, n, "0"*n, -dt , 0, xgate=True)
|
| 125 |
+
qc.append(W1, list(derivatives[0:n])+list(blocks[:]))
|
| 126 |
+
|
| 127 |
+
# qc.barrier()
|
| 128 |
+
|
| 129 |
+
W2 = Wj_block(3, n-1, "1"*(n-1), dt , 0, xgate=[0,1])
|
| 130 |
+
qc.append(W2, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 131 |
+
|
| 132 |
+
# qc.barrier()
|
| 133 |
+
|
| 134 |
+
W3 = Wj_block(1, n+1, "0"*(n+1), dt , 0, xgate=False)
|
| 135 |
+
qc.append(W3, list(derivatives[n:2*n])+list(blocks[:]))
|
| 136 |
+
|
| 137 |
+
# qc.barrier()
|
| 138 |
+
|
| 139 |
+
W4 = Wj_block(2, n, "0"+"1"*(n-1), -dt , 0, xgate=False)
|
| 140 |
+
qc.append(W4, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 141 |
+
|
| 142 |
+
return qc
|
| 143 |
+
|
| 144 |
+
def V2(nx, dt, name = "V2"):
|
| 145 |
+
n = int(np.ceil(np.log2(nx)))
|
| 146 |
+
|
| 147 |
+
derivatives = QuantumRegister(2*n)
|
| 148 |
+
blocks = QuantumRegister(2)
|
| 149 |
+
|
| 150 |
+
qc = QuantumCircuit(derivatives, blocks)
|
| 151 |
+
|
| 152 |
+
W1 = Wj_block(2, 0, "", -2*dt , -np.pi/2, xgate=True)
|
| 153 |
+
qc.append(W1, list(blocks[:]))
|
| 154 |
+
|
| 155 |
+
# qc.barrier()
|
| 156 |
+
|
| 157 |
+
for j in range(1, n+1):
|
| 158 |
+
W2 = Wj_block(2+j, 0, "", 2*dt , -np.pi/2, xgate=[1]*(j-1)+[0,1])
|
| 159 |
+
qc.append(W2, list(derivatives[0:j])+list(blocks[:]))
|
| 160 |
+
|
| 161 |
+
# qc.barrier()
|
| 162 |
+
|
| 163 |
+
W3 = Wj_block(2, n, "0"*n, -dt , -np.pi/2, xgate=True)
|
| 164 |
+
qc.append(W3, list(derivatives[0:n])+list(blocks[:]))
|
| 165 |
+
|
| 166 |
+
# qc.barrier()
|
| 167 |
+
|
| 168 |
+
W4 = Wj_block(2, n, "1"*n, 2*dt , -np.pi/2, xgate=True)
|
| 169 |
+
qc.append(W4, list(derivatives[0:n])+list(blocks[:]))
|
| 170 |
+
|
| 171 |
+
# qc.barrier()
|
| 172 |
+
|
| 173 |
+
W5 = Wj_block(3, n-1, "1"*(n-1), dt , -np.pi/2, xgate=[0,1])
|
| 174 |
+
qc.append(W5, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
|
| 175 |
+
|
| 176 |
+
# qc.barrier()
|
| 177 |
+
|
| 178 |
+
W6 = Wj_block(1, 1, "0", 2*dt , -np.pi/2, xgate=False)
|
| 179 |
+
qc.append(W6, list(blocks[:]))
|
| 180 |
+
|
| 181 |
+
# qc.barrier()
|
| 182 |
+
|
| 183 |
+
for j in range(1, n+1):
|
| 184 |
+
W7 = Wj_block(1+j, 1, "0", -2*dt , -np.pi/2, xgate=[1]*(j-1))
|
| 185 |
+
qc.append(W7, [blocks[0]]+list(derivatives[n:n+j])+[blocks[1]])
|
| 186 |
+
|
| 187 |
+
# qc.barrier()
|
| 188 |
+
|
| 189 |
+
W8 = Wj_block(1, n+1, "0"*(n+1), dt , -np.pi/2, xgate=False)
|
| 190 |
+
qc.append(W8, list(derivatives[n:2*n])+list(blocks[:]))
|
| 191 |
+
|
| 192 |
+
# qc.barrier()
|
| 193 |
+
|
| 194 |
+
W9 = Wj_block(1, n+1, "0"+"1"*(n), -2*dt , -np.pi/2, xgate=False)
|
| 195 |
+
qc.append(W9, list(derivatives[n:2*n])+list(blocks[:]))
|
| 196 |
+
|
| 197 |
+
# qc.barrier()
|
| 198 |
+
|
| 199 |
+
W10 = Wj_block(2, n, "0"+"1"*(n-1), -dt , -np.pi/2, xgate=False)
|
| 200 |
+
qc.append(W10, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 201 |
+
|
| 202 |
+
# qc.barrier()
|
| 203 |
+
|
| 204 |
+
return qc
|
| 205 |
+
|
| 206 |
+
def schro(nx, na, R, dt, initial_state, steps):
|
| 207 |
+
|
| 208 |
+
nq = int(np.ceil(np.log2(nx)))
|
| 209 |
+
|
| 210 |
+
# warped phase transformation
|
| 211 |
+
dp = 2 * R * np.pi / 2**na
|
| 212 |
+
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 213 |
+
fp = np.exp(-np.abs(p))
|
| 214 |
+
norm1 = np.linalg.norm(fp[2**(na-1):]) # norm of p>=0
|
| 215 |
+
|
| 216 |
+
# construct quantum circuit
|
| 217 |
+
system = QuantumRegister(2*nq+2, name='system')
|
| 218 |
+
ancilla = QuantumRegister(na, name='ancilla')
|
| 219 |
+
qc = QuantumCircuit(system, ancilla)
|
| 220 |
+
|
| 221 |
+
# initialization
|
| 222 |
+
prep = StatePreparation(initial_state)
|
| 223 |
+
anc_prep = StatePreparation(fp / np.linalg.norm(fp))
|
| 224 |
+
|
| 225 |
+
qc.append(prep, system)
|
| 226 |
+
# qc.append(anc_prep, ancilla)
|
| 227 |
+
qc.initialize(fp / np.linalg.norm(fp), ancilla)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# QFT
|
| 231 |
+
qc.append(QFTGate(na), ancilla)
|
| 232 |
+
qc.x(ancilla[-1])
|
| 233 |
+
|
| 234 |
+
A1 = V1(nx, dt, name = "V1").to_gate()
|
| 235 |
+
A2 = V2(nx, dt, name = "V2")
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# Hamiltonian simulation for Nt steps
|
| 239 |
+
for i in range(steps):
|
| 240 |
+
# circuit for one step
|
| 241 |
+
for j in range(na):
|
| 242 |
+
# repeat controlled H1 for 2**j times
|
| 243 |
+
qc.append(A1.control().repeat(2**j), [ancilla[j]] + system[:])
|
| 244 |
+
|
| 245 |
+
# qc.append(A1.inverse().control(ctrl_state = "0").repeat(2**(na-1)), [ancilla[na-1]] + system[:])
|
| 246 |
+
qc.append(A1.inverse().repeat(2**(na-1)), system[:])
|
| 247 |
+
qc.append(A2, system[:])
|
| 248 |
+
|
| 249 |
+
# rearrange eta
|
| 250 |
+
qc.x(ancilla[-1])
|
| 251 |
+
qc.append(QFTGate(na).inverse(), ancilla)
|
| 252 |
+
|
| 253 |
+
return qc
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def circ_for_magnitude(field, x, y, nx, na, R, dt, initial_state, steps):
|
| 258 |
+
|
| 259 |
+
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 260 |
+
naimark = QuantumRegister(1, name='Naimark')
|
| 261 |
+
qc.add_register(naimark)
|
| 262 |
+
|
| 263 |
+
if field == 'Ez':
|
| 264 |
+
index = nx * y + x
|
| 265 |
+
elif field == 'Hx':
|
| 266 |
+
index = 2*nx*nx + nx * y + x
|
| 267 |
+
else:
|
| 268 |
+
index = 3*nx*nx + nx * y + x
|
| 269 |
+
|
| 270 |
+
index_bin = format(index, f'0{qc.num_qubits-2}b')
|
| 271 |
+
ctrl_state = '1' + index_bin
|
| 272 |
+
ctrl_qubits = qc.qubits[:-1]
|
| 273 |
+
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state)
|
| 274 |
+
|
| 275 |
+
return qc
|
| 276 |
+
|
| 277 |
+
def circuits_for_sign(field, x, y, nx, na, dt, R, initial_state, steps, xref, yref, field_ref = 'Ez'):
|
| 278 |
+
qc = schro(nx, na, R, dt, initial_state, steps)
|
| 279 |
+
|
| 280 |
+
naimark = QuantumRegister(1, name='Naimark')
|
| 281 |
+
qc.add_register(naimark)
|
| 282 |
+
|
| 283 |
+
if field == 'Ez':
|
| 284 |
+
index = nx * y + x
|
| 285 |
+
elif field == 'Hx':
|
| 286 |
+
index = 2*nx*nx + nx * y + x
|
| 287 |
+
else:
|
| 288 |
+
index = 3*nx*nx + nx * y + x
|
| 289 |
+
|
| 290 |
+
if field_ref == 'Ez':
|
| 291 |
+
index_ref = nx * yref + xref
|
| 292 |
+
elif field_ref == 'Hx':
|
| 293 |
+
index_ref = 2*nx*nx + nx * yref + xref
|
| 294 |
+
else:
|
| 295 |
+
index_ref = 3*nx*nx + nx * yref + xref
|
| 296 |
+
|
| 297 |
+
index_bin = [(index >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 298 |
+
index_ref_bin = [(index_ref >> i) & 1 for i in range(qc.num_qubits-2)]
|
| 299 |
+
index_bin.append(1)
|
| 300 |
+
index_ref_bin.append(1)
|
| 301 |
+
|
| 302 |
+
#Convert reference bitstring to 00000
|
| 303 |
+
for i, bit in enumerate(index_ref_bin):
|
| 304 |
+
if bit == 1:
|
| 305 |
+
qc.x(i)
|
| 306 |
+
|
| 307 |
+
d_bits = [b ^ r for b, r in zip(index_ref_bin, index_bin)]
|
| 308 |
+
control = d_bits.index(1)
|
| 309 |
+
|
| 310 |
+
#Convert the other bitstring to 0001000
|
| 311 |
+
for target, bit in enumerate(d_bits):
|
| 312 |
+
if bit == 1 and target != control:
|
| 313 |
+
qc.cx(control, target)
|
| 314 |
+
qc.h(control)
|
| 315 |
+
|
| 316 |
+
ctrl_state_sum = '0'*(qc.num_qubits-1)
|
| 317 |
+
ctrl_state_diff = '0'*(qc.num_qubits-1-control-1)+'1'+'0'*(control)
|
| 318 |
+
|
| 319 |
+
qcdiff = qc.copy()
|
| 320 |
+
|
| 321 |
+
ctrl_qubits = qc.qubits[:-1]
|
| 322 |
+
|
| 323 |
+
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_sum)
|
| 324 |
+
qcdiff.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_diff)
|
| 325 |
+
|
| 326 |
+
return qc, qcdiff
|
| 327 |
+
|
| 328 |
+
def get_absolute_field_value(qc, nq, na, offset, norm):
|
| 329 |
+
|
| 330 |
+
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 331 |
+
observable = SparsePauliOp(Pauli(pauli_label))
|
| 332 |
+
########################################################################################
|
| 333 |
+
estimator = StatevectorEstimator()
|
| 334 |
+
|
| 335 |
+
# === Run Estimator (no parameters needed) ===
|
| 336 |
+
pub = (qc, observable)
|
| 337 |
+
job = estimator.run([pub])
|
| 338 |
+
result = job.result()[0]
|
| 339 |
+
z_exp = result.data.evs.item()
|
| 340 |
+
#########################################################################################
|
| 341 |
+
# === Compute projector expectation ===
|
| 342 |
+
pi_expect = (1 - z_exp) / 2
|
| 343 |
+
|
| 344 |
+
Absolute_value = norm*np.sqrt(pi_expect)-offset
|
| 345 |
+
|
| 346 |
+
return Absolute_value
|
| 347 |
+
|
| 348 |
+
def get_relative_sign(qc, qcdiff, nq, na):
|
| 349 |
+
|
| 350 |
+
pauli_label = 'Z'+'I'*(2*nq+2+na)
|
| 351 |
+
observable = SparsePauliOp(Pauli(pauli_label))
|
| 352 |
+
########################################################################################
|
| 353 |
+
estimator = StatevectorEstimator()
|
| 354 |
+
|
| 355 |
+
# === Run Estimator ===
|
| 356 |
+
pub = (qc, observable)
|
| 357 |
+
job = estimator.run([pub])
|
| 358 |
+
result = job.result()[0]
|
| 359 |
+
z_exp = result.data.evs.item()
|
| 360 |
+
|
| 361 |
+
pub_diff = (qcdiff, observable)
|
| 362 |
+
job_diff = estimator.run([pub_diff])
|
| 363 |
+
result_diff = job_diff.result()[0]
|
| 364 |
+
z_exp_diff = result_diff.data.evs.item()
|
| 365 |
+
#########################################################################################
|
| 366 |
+
# === Compute projector expectation ===
|
| 367 |
+
pi_expect_sum = (1 - z_exp) / 2
|
| 368 |
+
pi_expect_diff = (1 - z_exp_diff) / 2
|
| 369 |
+
|
| 370 |
+
relative_sign = 'same' if pi_expect_sum >= pi_expect_diff else 'different'
|
| 371 |
+
|
| 372 |
+
return relative_sign
|
| 373 |
+
|
| 374 |
+
def Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref = 'Ez'):
|
| 375 |
+
if steps < 31:
|
| 376 |
+
offset = 1
|
| 377 |
+
else :
|
| 378 |
+
offset = 0.15
|
| 379 |
+
deltastate = np.zeros(4*nx*nx)
|
| 380 |
+
# deltastate[nx*nx//2+nx//2:nx*nx//2+nx//2+1] = 1
|
| 381 |
+
deltastate[nx*yref+xref] = 1
|
| 382 |
+
deltastate[0:nx*nx] = deltastate[0:nx*nx] + offset
|
| 383 |
+
norm1 = np.linalg.norm(deltastate)
|
| 384 |
+
initial_state = deltastate/norm1
|
| 385 |
+
|
| 386 |
+
dp = 2 * R * np.pi / 2**na
|
| 387 |
+
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 388 |
+
fp = np.exp(-np.abs(p))
|
| 389 |
+
norm2 = np.linalg.norm(fp)
|
| 390 |
+
norm = norm1 * norm2
|
| 391 |
+
|
| 392 |
+
qc = circ_for_magnitude(field_ref, xref, yref, nx, na, R, dt, initial_state, steps)
|
| 393 |
+
|
| 394 |
+
Ezref = get_absolute_field_value(qc, nq, na, offset, norm)
|
| 395 |
+
|
| 396 |
+
return Ezref
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def transpile_circ(circ, basis_gates=None):
|
| 400 |
+
"""
|
| 401 |
+
Transpile the circuit to the specified basis gates.
|
| 402 |
+
"""
|
| 403 |
+
if basis_gates is None:
|
| 404 |
+
basis_gates = ['z', 'y', 'x', 'sdg', 's', 'h', 'rz', 'ry', 'rx', 'ecr', 'cz', 'cx']
|
| 405 |
+
|
| 406 |
+
transpiled_circ = transpile(circ, basis_gates=basis_gates)
|
| 407 |
+
return transpiled_circ
|
| 408 |
+
|
| 409 |
+
def compute_fidelity(circ1, circ2):
|
| 410 |
+
|
| 411 |
+
circ_1 = tensornetwork_from_circuit(transpile_circ(circ1), simulator_settings)
|
| 412 |
+
circ_2 = tensornetwork_from_circuit(transpile_circ(circ2), simulator_settings)
|
| 413 |
+
fidelity = abs(compute_overlap(circ_1, circ_2))**2
|
| 414 |
+
|
| 415 |
+
return fidelity
|
| 416 |
+
|
| 417 |
+
# def create_impulse_state(grid_dims, impulse_pos):
|
| 418 |
+
# """
|
| 419 |
+
# Creates an initial state vector with a single delta impulse at a specified grid position.
|
| 420 |
+
|
| 421 |
+
# The 2D grid is flattened into a 1D vector in row-major order, and this
|
| 422 |
+
# vector is then padded to match the full simulation state space size (4x).
|
| 423 |
+
|
| 424 |
+
# Args:
|
| 425 |
+
# grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
|
| 426 |
+
# For your original code, this would be (nx, nx).
|
| 427 |
+
# impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
|
| 428 |
+
# Coordinates are 0-indexed.
|
| 429 |
+
|
| 430 |
+
# Returns:
|
| 431 |
+
# numpy.ndarray: The full, padded initial state vector with a single 1.
|
| 432 |
+
|
| 433 |
+
# Raises:
|
| 434 |
+
# ValueError: If the impulse position is outside the grid dimensions.
|
| 435 |
+
# """
|
| 436 |
+
# grid_width, grid_height = grid_dims
|
| 437 |
+
# impulse_x, impulse_y = impulse_pos
|
| 438 |
+
|
| 439 |
+
# # --- Input Validation ---
|
| 440 |
+
# # Ensure the requested impulse position is actually on the grid.
|
| 441 |
+
# if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
|
| 442 |
+
# raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
|
| 443 |
+
# f"grid dimensions ({grid_width}x{grid_height}).")
|
| 444 |
+
|
| 445 |
+
# # --- 1. Calculate the 1D Array Index ---
|
| 446 |
+
# # Convert the (x, y) coordinate to a single index in a flattened 1D array.
|
| 447 |
+
# # The formula for row-major order is: index = y_coord * width + x_coord
|
| 448 |
+
# flat_index = impulse_y * grid_width + impulse_x
|
| 449 |
+
|
| 450 |
+
# # --- 2. Create the Full, Padded State Vector ---
|
| 451 |
+
# grid_size = grid_width * grid_height
|
| 452 |
+
# total_size = 4 * grid_size # The simulation space is 4x the grid size.
|
| 453 |
+
# initial_state = np.zeros(total_size)
|
| 454 |
+
|
| 455 |
+
# # --- 3. Set the Delta Impulse ---
|
| 456 |
+
# initial_state[flat_index] = 1
|
| 457 |
+
|
| 458 |
+
# return initial_state
|
utils/delta_impulse_generator.py
ADDED
|
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import math
|
| 3 |
+
from qiskit.circuit import QuantumCircuit, QuantumRegister
|
| 4 |
+
from qiskit.circuit.library import StatePreparation, QFTGate, RZGate
|
| 5 |
+
from qiskit.quantum_info import Statevector
|
| 6 |
+
import pyvista as pv
|
| 7 |
+
|
| 8 |
+
def create_impulse_state(grid_dims, impulse_pos):
|
| 9 |
+
"""
|
| 10 |
+
Creates an initial state vector with a single delta impulse at a specified grid position.
|
| 11 |
+
|
| 12 |
+
The 2D grid is flattened into a 1D vector in row-major order, and this
|
| 13 |
+
vector is then padded to match the full simulation state space size (4x).
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
|
| 17 |
+
For your original code, this would be (nx, nx).
|
| 18 |
+
impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
|
| 19 |
+
Coordinates are 0-indexed.
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
numpy.ndarray: The full, padded initial state vector with a single 1.
|
| 23 |
+
|
| 24 |
+
Raises:
|
| 25 |
+
ValueError: If the impulse position is outside the grid dimensions.
|
| 26 |
+
"""
|
| 27 |
+
grid_width, grid_height = grid_dims
|
| 28 |
+
impulse_x, impulse_y = impulse_pos
|
| 29 |
+
|
| 30 |
+
# --- Input Validation ---
|
| 31 |
+
# Ensure the requested impulse position is actually on the grid.
|
| 32 |
+
if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
|
| 33 |
+
raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
|
| 34 |
+
f"grid dimensions ({grid_width}x{grid_height}).")
|
| 35 |
+
|
| 36 |
+
# --- 1. Calculate the 1D Array Index ---
|
| 37 |
+
# Convert the (x, y) coordinate to a single index in a flattened 1D array.
|
| 38 |
+
# The formula for row-major order is: index = y_coord * width + x_coord
|
| 39 |
+
flat_index = impulse_y * grid_width + impulse_x
|
| 40 |
+
|
| 41 |
+
# --- 2. Create the Full, Padded State Vector ---
|
| 42 |
+
grid_size = grid_width * grid_height
|
| 43 |
+
total_size = 4 * grid_size # The simulation space is 4x the grid size.
|
| 44 |
+
initial_state = np.zeros(total_size)
|
| 45 |
+
|
| 46 |
+
# --- 3. Set the Delta Impulse ---
|
| 47 |
+
initial_state[flat_index] = 1
|
| 48 |
+
|
| 49 |
+
return initial_state
|
| 50 |
+
|
| 51 |
+
def create_gaussian_state(grid_dims, mu, sigma):
|
| 52 |
+
"""
|
| 53 |
+
Creates an initial state vector with a 2D Gaussian distribution.
|
| 54 |
+
|
| 55 |
+
The state is normalized and padded to match the full simulation state space size (4x).
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
grid_dims (tuple): A tuple (width, height) defining the grid dimensions.
|
| 59 |
+
mu (tuple): A tuple (mu_x, mu_y) for the center (mean) of the Gaussian.
|
| 60 |
+
sigma (tuple): A tuple (sigma_x, sigma_y) for the standard deviation (spread).
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
numpy.ndarray: The full, padded initial state vector for the Gaussian state.
|
| 64 |
+
|
| 65 |
+
Raises:
|
| 66 |
+
ValueError: If sigma values are not positive.
|
| 67 |
+
"""
|
| 68 |
+
grid_width, grid_height = grid_dims
|
| 69 |
+
mu_x, mu_y = mu
|
| 70 |
+
sigma_x, sigma_y = sigma
|
| 71 |
+
|
| 72 |
+
if sigma_x <= 0 or sigma_y <= 0:
|
| 73 |
+
raise ValueError("Sigma values (spread) must be positive.")
|
| 74 |
+
|
| 75 |
+
# --- 1. Create a Coordinate Grid ---
|
| 76 |
+
x = np.arange(0, grid_width)
|
| 77 |
+
y = np.arange(0, grid_height)
|
| 78 |
+
X, Y = np.meshgrid(x, y)
|
| 79 |
+
|
| 80 |
+
# --- 2. Calculate the 2D Gaussian Function ---
|
| 81 |
+
gaussian_2d = np.exp(-((X - mu_x)**2 / (2 * sigma_x**2)) -
|
| 82 |
+
((Y - mu_y)**2 / (2 * sigma_y**2)))
|
| 83 |
+
|
| 84 |
+
# --- 3. Normalize the State Vector ---
|
| 85 |
+
# For a valid quantum state, the L2 norm (sum of squares of amplitudes) must be 1.
|
| 86 |
+
norm = np.linalg.norm(gaussian_2d)
|
| 87 |
+
if norm > 0:
|
| 88 |
+
gaussian_2d = gaussian_2d / norm
|
| 89 |
+
|
| 90 |
+
# --- 4. Flatten and Pad the Vector ---
|
| 91 |
+
gaussian_flat = gaussian_2d.flatten()
|
| 92 |
+
grid_size = grid_width * grid_height
|
| 93 |
+
total_size = 4 * grid_size
|
| 94 |
+
initial_state = np.pad(gaussian_flat, (0, total_size - grid_size), mode='constant')
|
| 95 |
+
|
| 96 |
+
return initial_state
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# --- New: Continuous-position helpers for excitation before meshing ---
|
| 103 |
+
def _normalize_to_unit(vec: np.ndarray) -> np.ndarray:
|
| 104 |
+
n = np.linalg.norm(vec)
|
| 105 |
+
return vec / n if n > 0 else vec
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def create_impulse_state_from_pos(grid_dims, pos01):
|
| 111 |
+
"""
|
| 112 |
+
Create a delta-like initial state from continuous position pos01=(x,y) in [0,1].
|
| 113 |
+
|
| 114 |
+
Why grid_dims?
|
| 115 |
+
- Simulation runs on a discrete nx×ny lattice; the continuous position must be
|
| 116 |
+
discretized onto that grid to produce the state vector fed into the solver.
|
| 117 |
+
- grid_dims provides (nx, ny) so we can map (x,y)∈[0,1]→grid coordinates via
|
| 118 |
+
gx = x*(nx-1), gy = y*(ny-1), then distribute amplitude bilinearly to the 4
|
| 119 |
+
neighboring nodes. This is required only for the simulation state, not the preview.
|
| 120 |
+
|
| 121 |
+
The preview uses create_impulse_preview_state(), which renders a smooth bump on a
|
| 122 |
+
fixed unit-square grid independent of nx for visualization.
|
| 123 |
+
"""
|
| 124 |
+
grid_width, grid_height = grid_dims
|
| 125 |
+
px, py = pos01
|
| 126 |
+
px = float(max(0.0, min(1.0, px)))
|
| 127 |
+
py = float(max(0.0, min(1.0, py)))
|
| 128 |
+
|
| 129 |
+
gx = px * (grid_width - 1)
|
| 130 |
+
gy = py * (grid_height - 1)
|
| 131 |
+
i0, j0 = int(np.floor(gx)), int(np.floor(gy))
|
| 132 |
+
i1, j1 = min(i0 + 1, grid_width - 1), min(j0 + 1, grid_height - 1)
|
| 133 |
+
dx, dy = gx - i0, gy - j0
|
| 134 |
+
|
| 135 |
+
w00 = (1 - dx) * (1 - dy)
|
| 136 |
+
w10 = dx * (1 - dy)
|
| 137 |
+
w01 = (1 - dx) * dy
|
| 138 |
+
w11 = dx * dy
|
| 139 |
+
|
| 140 |
+
grid_size = grid_width * grid_height
|
| 141 |
+
total_size = 4 * grid_size
|
| 142 |
+
field = np.zeros(grid_size)
|
| 143 |
+
field[j0 * grid_width + i0] += w00
|
| 144 |
+
field[j0 * grid_width + i1] += w10
|
| 145 |
+
field[j1 * grid_width + i0] += w01
|
| 146 |
+
field[j1 * grid_width + i1] += w11
|
| 147 |
+
field = _normalize_to_unit(field)
|
| 148 |
+
|
| 149 |
+
initial_state = np.zeros(total_size)
|
| 150 |
+
initial_state[:grid_size] = field
|
| 151 |
+
return initial_state
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def create_gaussian_state_from_pos(grid_dims, mu01, sigma01):
|
| 155 |
+
"""
|
| 156 |
+
Create a Gaussian initial state with center mu01=(x,y) and spreads sigma01=(sx,sy)
|
| 157 |
+
in [0,1] of the domain, then discretize to the solver grid given by grid_dims.
|
| 158 |
+
|
| 159 |
+
Why grid_dims?
|
| 160 |
+
- The quantum solver expects a vector aligned to the chosen nx×ny simulation grid.
|
| 161 |
+
We convert normalized μ and σ (fractions of the domain) into grid units using
|
| 162 |
+
(nx-1) and (ny-1). This step is necessary for the simulation, not for the preview.
|
| 163 |
+
|
| 164 |
+
For preview-only rendering, use create_impulse_preview_state() to keep the visuals
|
| 165 |
+
continuous and independent of nx.
|
| 166 |
+
"""
|
| 167 |
+
grid_width, grid_height = grid_dims
|
| 168 |
+
mu_x01, mu_y01 = mu01
|
| 169 |
+
sig_x01, sig_y01 = sigma01
|
| 170 |
+
|
| 171 |
+
mu_x01 = float(max(0.0, min(1.0, mu_x01)))
|
| 172 |
+
mu_y01 = float(max(0.0, min(1.0, mu_y01)))
|
| 173 |
+
sig_x01 = float(sig_x01)
|
| 174 |
+
sig_y01 = float(sig_y01)
|
| 175 |
+
if sig_x01 <= 0 or sig_y01 <= 0:
|
| 176 |
+
raise ValueError("Sigma values (spread) must be positive.")
|
| 177 |
+
|
| 178 |
+
mu_x = mu_x01 * (grid_width - 1)
|
| 179 |
+
mu_y = mu_y01 * (grid_height - 1)
|
| 180 |
+
sigma_x = sig_x01 * (grid_width - 1)
|
| 181 |
+
sigma_y = sig_y01 * (grid_height - 1)
|
| 182 |
+
|
| 183 |
+
x = np.arange(0, grid_width)
|
| 184 |
+
y = np.arange(0, grid_height)
|
| 185 |
+
X, Y = np.meshgrid(x, y)
|
| 186 |
+
gaussian_2d = np.exp(-((X - mu_x) ** 2) / (2 * sigma_x ** 2) - ((Y - mu_y) ** 2) / (2 * sigma_y ** 2))
|
| 187 |
+
|
| 188 |
+
field = _normalize_to_unit(gaussian_2d.ravel())
|
| 189 |
+
grid_size = grid_width * grid_height
|
| 190 |
+
total_size = 4 * grid_size
|
| 191 |
+
initial_state = np.zeros(total_size)
|
| 192 |
+
initial_state[:grid_size] = field
|
| 193 |
+
return initial_state
|
| 194 |
+
|
| 195 |
+
# --- Simulation Code (from previous context) ---
|
| 196 |
+
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
|
| 197 |
+
qc = QuantumCircuit(n + j, name=name)
|
| 198 |
+
if j > 1: qc.cx(n + j - 1, range(n, n + j - 1))
|
| 199 |
+
if lam != 0: qc.p(lam, n + j - 1)
|
| 200 |
+
qc.h(n + j - 1)
|
| 201 |
+
if xgate and j > 1:
|
| 202 |
+
if isinstance(xgate, (list, tuple)):
|
| 203 |
+
for idx, flag in enumerate(xgate):
|
| 204 |
+
if flag: qc.x(n + idx)
|
| 205 |
+
elif xgate is True: qc.x(range(n, n + j - 1))
|
| 206 |
+
if j > 1:
|
| 207 |
+
mcrz = RZGate(theta).control(len(ctrl_state) + j - 1, ctrl_state="1" * (j - 1) + ctrl_state)
|
| 208 |
+
qc.append(mcrz, range(0, n + j))
|
| 209 |
+
else:
|
| 210 |
+
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state=ctrl_state)
|
| 211 |
+
qc.append(mcrz, range(0, n + j))
|
| 212 |
+
if xgate and j > 1:
|
| 213 |
+
if isinstance(xgate, (list, tuple)):
|
| 214 |
+
for idx, flag in enumerate(xgate):
|
| 215 |
+
if flag: qc.x(n + idx)
|
| 216 |
+
elif xgate is True: qc.x(range(n, n + j - 1))
|
| 217 |
+
qc.h(n + j - 1)
|
| 218 |
+
if lam != 0: qc.p(-lam, n + j - 1)
|
| 219 |
+
if j > 1: qc.cx(n + j - 1, range(n, n + j - 1))
|
| 220 |
+
return qc.to_gate(label=name)
|
| 221 |
+
|
| 222 |
+
def V1(nx, dt):
|
| 223 |
+
n = int(np.ceil(np.log2(nx)))
|
| 224 |
+
derivatives, blocks = QuantumRegister(2 * n), QuantumRegister(2)
|
| 225 |
+
qc = QuantumCircuit(derivatives, blocks)
|
| 226 |
+
qc.append(Wj_block(2, n, "0" * n, -dt, 0, xgate=True), list(derivatives[0:n]) + list(blocks[:]))
|
| 227 |
+
qc.append(Wj_block(3, n - 1, "1" * (n - 1), dt, 0, xgate=[0, 1]), list(derivatives[1:n]) + [derivatives[0]] + list(blocks[:]))
|
| 228 |
+
qc.append(Wj_block(1, n + 1, "0" * (n + 1), dt, 0, xgate=True), list(derivatives[n:2 * n]) + list(blocks[:]))
|
| 229 |
+
qc.append(Wj_block(2, n, "0" + "1" * (n - 1), -dt, 0, xgate=False), list(derivatives[n + 1:2 * n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 230 |
+
return qc
|
| 231 |
+
|
| 232 |
+
def V2(nx, dt):
|
| 233 |
+
n = int(np.ceil(np.log2(nx)))
|
| 234 |
+
derivatives, blocks = QuantumRegister(2 * n), QuantumRegister(2)
|
| 235 |
+
qc = QuantumCircuit(derivatives, blocks)
|
| 236 |
+
qc.append(Wj_block(2, 0, "", -2 * dt, -np.pi / 2, xgate=True), blocks[:])
|
| 237 |
+
for j in range(1, n + 1): qc.append(Wj_block(2 + j, 0, "", 2 * dt, -np.pi / 2, xgate=[1] * (j - 1) + [0, 1]), list(derivatives[0:j]) + list(blocks[:]))
|
| 238 |
+
qc.append(Wj_block(2, n, "0" * n, -dt, -np.pi / 2, xgate=True), list(derivatives[0:n]) + list(blocks[:]))
|
| 239 |
+
qc.append(Wj_block(2, n, "1" * n, 2 * dt, -np.pi / 2, xgate=True), list(derivatives[0:n]) + list(blocks[:]))
|
| 240 |
+
qc.append(Wj_block(3, n - 1, "1" * (n - 1), dt, -np.pi / 2, xgate=[0, 1]), list(derivatives[1:n]) + [derivatives[0]] + list(blocks[:]))
|
| 241 |
+
qc.append(Wj_block(1, 1, "0", 2 * dt, -np.pi / 2, xgate=False), blocks[:])
|
| 242 |
+
for j in range(1, n + 1): qc.append(Wj_block(1 + j, 1, "0", -2 * dt, -np.pi / 2, xgate=[1] * (j - 1)), [blocks[0]] + list(derivatives[n:n + j]) + [blocks[1]])
|
| 243 |
+
qc.append(Wj_block(1, n + 1, "0" * (n + 1), dt, -np.pi / 2, xgate=False), list(derivatives[n:2 * n]) + list(blocks[:]))
|
| 244 |
+
qc.append(Wj_block(1, n + 1, "0" + "1" * n, -2 * dt, -np.pi / 2, xgate=False), list(derivatives[n:2 * n]) + list(blocks[:]))
|
| 245 |
+
qc.append(Wj_block(2, n, "0" + "1" * (n - 1), -dt, -np.pi / 2, xgate=False), list(derivatives[n + 1:2 * n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
|
| 246 |
+
return qc
|
| 247 |
+
|
| 248 |
+
def run_sim(nx, na, R, initial_state, T, snapshot_dt=None, stop_check=None, progress_callback=None, print_callback=None):
|
| 249 |
+
"""
|
| 250 |
+
Runs the quantum simulation for electromagnetic scattering with fixed dt=0.1.
|
| 251 |
+
Captures frames only at user-defined snapshot times: [0, Δt, 2Δt, ..., ≤ T_eff],
|
| 252 |
+
always including t=0 and the final solver-aligned T (T_eff = floor(T/dt)*dt).
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
frames (np.ndarray), snapshot_times (np.ndarray)
|
| 256 |
+
"""
|
| 257 |
+
def _log(msg):
|
| 258 |
+
if print_callback:
|
| 259 |
+
print_callback(msg)
|
| 260 |
+
else:
|
| 261 |
+
print(msg)
|
| 262 |
+
|
| 263 |
+
dt = 0.1
|
| 264 |
+
# Validate total time and compute solver-aligned end time
|
| 265 |
+
try:
|
| 266 |
+
T_val = float(T)
|
| 267 |
+
except Exception:
|
| 268 |
+
return np.array([]), np.array([])
|
| 269 |
+
if T_val <= 0:
|
| 270 |
+
return np.array([]), np.array([])
|
| 271 |
+
|
| 272 |
+
steps = int(np.floor(T_val / dt))
|
| 273 |
+
if steps <= 0:
|
| 274 |
+
return np.array([]), np.array([])
|
| 275 |
+
T_eff = steps * dt
|
| 276 |
+
|
| 277 |
+
# Determine snapshot Δt on solver grid
|
| 278 |
+
tol = 1e-12
|
| 279 |
+
if snapshot_dt is None:
|
| 280 |
+
snapshot_dt_val = dt
|
| 281 |
+
else:
|
| 282 |
+
try:
|
| 283 |
+
snapshot_dt_val = float(snapshot_dt)
|
| 284 |
+
except Exception:
|
| 285 |
+
snapshot_dt_val = dt
|
| 286 |
+
if snapshot_dt_val < dt - tol:
|
| 287 |
+
snapshot_dt_val = dt
|
| 288 |
+
k = max(1, int(round(snapshot_dt_val / dt)))
|
| 289 |
+
snapshot_dt_eff = k * dt
|
| 290 |
+
|
| 291 |
+
# Build requested snapshot times on solver grid
|
| 292 |
+
target_times = [0.0]
|
| 293 |
+
t = 0.0
|
| 294 |
+
while t + snapshot_dt_eff <= T_eff + tol:
|
| 295 |
+
t = round(t + snapshot_dt_eff, 12)
|
| 296 |
+
if t <= T_eff + tol:
|
| 297 |
+
target_times.append(min(t, T_eff))
|
| 298 |
+
if abs(target_times[-1] - T_eff) > tol:
|
| 299 |
+
target_times.append(T_eff)
|
| 300 |
+
|
| 301 |
+
# Setup circuit
|
| 302 |
+
nq = int(np.ceil(np.log2(nx)))
|
| 303 |
+
dp = 2 * R * np.pi / 2 ** na
|
| 304 |
+
p = np.arange(-R * np.pi, R * np.pi, step=dp)
|
| 305 |
+
fp = np.exp(-np.abs(p))
|
| 306 |
+
system, ancilla = QuantumRegister(2 * nq + 2), QuantumRegister(na)
|
| 307 |
+
qc = QuantumCircuit(system, ancilla)
|
| 308 |
+
qc.append(StatePreparation(initial_state), system)
|
| 309 |
+
qc.append(StatePreparation(fp / np.linalg.norm(fp)), ancilla)
|
| 310 |
+
expA1 = V1(nx, dt).to_gate()
|
| 311 |
+
expA2 = V2(nx, dt)
|
| 312 |
+
|
| 313 |
+
frames = []
|
| 314 |
+
# Capture initial frame at t=0
|
| 315 |
+
sv0 = np.real(Statevector(qc)).reshape(2 ** na, 2 ** (2 * nq + 2))
|
| 316 |
+
frames.append(sv0[2 ** (na - 1)])
|
| 317 |
+
next_idx = 1 # next target_times index to capture
|
| 318 |
+
|
| 319 |
+
_log(f"Starting simulation: T={T_eff:.2f}s, steps={steps}, snapshot_dt={snapshot_dt_eff:.2f}s")
|
| 320 |
+
|
| 321 |
+
for i in range(steps):
|
| 322 |
+
if stop_check and stop_check():
|
| 323 |
+
_log(f"Simulation interrupted at step {i}/{steps}")
|
| 324 |
+
break
|
| 325 |
+
# One solver step
|
| 326 |
+
qc.append(QFTGate(na), ancilla)
|
| 327 |
+
qc.x(ancilla[-1])
|
| 328 |
+
for j in range(na - 1):
|
| 329 |
+
qc.append(expA1.control().repeat(2 ** j), [ancilla[j]] + system[:])
|
| 330 |
+
qc.append(expA1.inverse().control(ctrl_state="0").repeat(2 ** (na - 1)), [ancilla[na - 1]] + system[:])
|
| 331 |
+
qc.append(expA2, system[:])
|
| 332 |
+
qc.x(ancilla[-1])
|
| 333 |
+
qc.append(QFTGate(na).inverse(), ancilla)
|
| 334 |
+
|
| 335 |
+
current_time = (i + 1) * dt
|
| 336 |
+
if next_idx < len(target_times) and abs(current_time - target_times[next_idx]) <= tol:
|
| 337 |
+
u = np.real(Statevector(qc)).reshape(2 ** na, 2 ** (2 * nq + 2))
|
| 338 |
+
frames.append(u[2 ** (na - 1)])
|
| 339 |
+
next_idx += 1
|
| 340 |
+
|
| 341 |
+
if progress_callback:
|
| 342 |
+
try:
|
| 343 |
+
progress = ((i + 1) / steps) * 100
|
| 344 |
+
progress_callback(progress)
|
| 345 |
+
except Exception:
|
| 346 |
+
pass
|
| 347 |
+
|
| 348 |
+
if progress_callback:
|
| 349 |
+
try:
|
| 350 |
+
progress_callback(100.0)
|
| 351 |
+
except Exception:
|
| 352 |
+
pass
|
| 353 |
+
|
| 354 |
+
_log("Simulation completed.")
|
| 355 |
+
|
| 356 |
+
# Ensure snapshot_times align with number of captured frames (covers early stop)
|
| 357 |
+
frames_arr = np.asarray(frames)
|
| 358 |
+
times_arr = np.asarray(target_times[: len(frames_arr)])
|
| 359 |
+
return frames_arr, times_arr
|
| 360 |
+
|
| 361 |
+
def create_impulse_preview_state(preview_n: int, pos01, sigma01: float = 0.02):
|
| 362 |
+
"""
|
| 363 |
+
Smooth delta-like preview on a unit square using a narrow Gaussian (sigma in [0,1]).
|
| 364 |
+
Preview-only helper, independent of simulation grid size (nx). Use this for the
|
| 365 |
+
Excitation preview; use the *_from_pos() variants for the actual simulation.
|
| 366 |
+
"""
|
| 367 |
+
try:
|
| 368 |
+
sx = float(sigma01) if sigma01 and sigma01 > 0 else 0.02
|
| 369 |
+
except Exception:
|
| 370 |
+
sx = 0.02
|
| 371 |
+
return create_gaussian_state_from_pos((int(preview_n), int(preview_n)), (float(pos01[0]), float(pos01[1])), (sx, sx))
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
##### Statevector Estimator Simulation Code Below #####
|
| 379 |
+
|
| 380 |
+
from .base_functions import *
|
| 381 |
+
|
| 382 |
+
def create_time_frames(total_time, snapshot_interval):
|
| 383 |
+
dt = 0.1
|
| 384 |
+
tol = 1e-9
|
| 385 |
+
try:
|
| 386 |
+
T_val = float(total_time)
|
| 387 |
+
except (ValueError, TypeError):
|
| 388 |
+
return []
|
| 389 |
+
if T_val <= 0:
|
| 390 |
+
return []
|
| 391 |
+
steps = int(np.floor(T_val / dt))
|
| 392 |
+
if steps <= 0:
|
| 393 |
+
return [0.0]
|
| 394 |
+
T_eff = steps * dt
|
| 395 |
+
try:
|
| 396 |
+
snapshot_dt_val = float(snapshot_interval)
|
| 397 |
+
except (ValueError, TypeError):
|
| 398 |
+
snapshot_dt_val = dt
|
| 399 |
+
if snapshot_dt_val < dt:
|
| 400 |
+
snapshot_dt_val = dt
|
| 401 |
+
k = max(1, int(round(snapshot_dt_val / dt)))
|
| 402 |
+
snapshot_dt_eff = k * dt
|
| 403 |
+
times = np.arange(0, T_eff + tol, snapshot_dt_eff)
|
| 404 |
+
if abs(times[-1] - T_eff) > tol:
|
| 405 |
+
times = np.append(times, T_eff)
|
| 406 |
+
times = np.round(times, 12)
|
| 407 |
+
unique_times = []
|
| 408 |
+
for t in times:
|
| 409 |
+
if not unique_times or abs(t - unique_times[-1]) > tol:
|
| 410 |
+
unique_times.append(float(t))
|
| 411 |
+
return unique_times
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def run_sve(field, x, y, T, snapshot_time, nx, initial_state, impulse_pos, progress_callback=None, print_callback=None):
|
| 416 |
+
"""Statevector Estimator for time-series field values.
|
| 417 |
+
|
| 418 |
+
Supports both single-point and multi-point modes.
|
| 419 |
+
|
| 420 |
+
- Single-point (backward compatible): x, y are integers; returns list[float].
|
| 421 |
+
- Multi-point: x is a list/tuple of (ix, iy) integer pairs and y is None; returns dict[(ix,iy) -> list[float]].
|
| 422 |
+
"""
|
| 423 |
+
def _log(msg):
|
| 424 |
+
if print_callback:
|
| 425 |
+
print_callback(msg)
|
| 426 |
+
else:
|
| 427 |
+
print(msg)
|
| 428 |
+
|
| 429 |
+
na = 1
|
| 430 |
+
dt = 0.1
|
| 431 |
+
R = 4
|
| 432 |
+
nq = int(np.ceil(np.log2(nx)))
|
| 433 |
+
|
| 434 |
+
# Normalize monitor points input
|
| 435 |
+
if isinstance(x, (list, tuple)) and y is None:
|
| 436 |
+
points = [tuple(map(int, pt)) for pt in x]
|
| 437 |
+
multi = True
|
| 438 |
+
else:
|
| 439 |
+
points = [(int(x), int(y))]
|
| 440 |
+
multi = False
|
| 441 |
+
|
| 442 |
+
xref, yref = impulse_pos
|
| 443 |
+
|
| 444 |
+
offset = 0
|
| 445 |
+
grid_dims = (nx, nx)
|
| 446 |
+
initial_state = create_impulse_state(grid_dims, impulse_pos)
|
| 447 |
+
|
| 448 |
+
dp = 2 * R * np.pi / 2**na
|
| 449 |
+
p = np.arange(- R * np.pi, R * np.pi, step=dp)
|
| 450 |
+
fp = np.exp(-np.abs(p))
|
| 451 |
+
norm = np.linalg.norm(fp)
|
| 452 |
+
|
| 453 |
+
time_frames = create_time_frames(T, snapshot_time)
|
| 454 |
+
total_frames = len(time_frames)
|
| 455 |
+
|
| 456 |
+
_log(f"Starting QPU simulation: T={T}s, frames={total_frames}, points={len(points)}")
|
| 457 |
+
|
| 458 |
+
# Prepare outputs
|
| 459 |
+
if multi:
|
| 460 |
+
series_by_point = { (px, py): [] for (px, py) in points }
|
| 461 |
+
else:
|
| 462 |
+
series_single = []
|
| 463 |
+
|
| 464 |
+
for idx, time in enumerate(time_frames):
|
| 465 |
+
steps = int(math.ceil(time / dt))
|
| 466 |
+
# Reference Ez field at impulse location for sign
|
| 467 |
+
Eref = Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref='Ez')
|
| 468 |
+
|
| 469 |
+
for (px, py) in points:
|
| 470 |
+
circ_magnitude = circ_for_magnitude(field, px, py, nx, na, R, dt, initial_state, steps)
|
| 471 |
+
magnitude = get_absolute_field_value(circ_magnitude, nq, na, offset, norm)
|
| 472 |
+
|
| 473 |
+
if field == 'Ez' and px == xref and py == yref:
|
| 474 |
+
Field_value = -magnitude if Eref < 0 else magnitude
|
| 475 |
+
else:
|
| 476 |
+
circsum, circdiff = circuits_for_sign(field, px, py, nx, na, dt, R, initial_state, steps, xref, yref, field_ref='Ez')
|
| 477 |
+
sign = get_relative_sign(circsum, circdiff, nq, na)
|
| 478 |
+
if (sign == 'same' and Eref > 0) or (sign == 'different' and Eref < 0):
|
| 479 |
+
Field_value = magnitude
|
| 480 |
+
else:
|
| 481 |
+
Field_value = -magnitude
|
| 482 |
+
|
| 483 |
+
if multi:
|
| 484 |
+
series_by_point[(px, py)].append(Field_value)
|
| 485 |
+
else:
|
| 486 |
+
series_single.append(Field_value)
|
| 487 |
+
|
| 488 |
+
if progress_callback:
|
| 489 |
+
progress_callback((idx + 1) / total_frames * 100)
|
| 490 |
+
|
| 491 |
+
_log("Statevector Estimator simulation completed.")
|
| 492 |
+
|
| 493 |
+
return series_by_point if multi else series_single
|
wq
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Merge branch 'main' of https://huggingface.co/spaces/ansysresearch/quantum
|
| 2 |
+
# Please enter a commit message to explain why this merge is necessary,
|
| 3 |
+
# especially if it merges an updated upstream into a topic branch.
|
| 4 |
+
#
|
| 5 |
+
# Lines starting with '#' will be ignored, and an empty message aborts
|
| 6 |
+
# the commit.
|