Upload 2 files
Browse files
TMIDIX.py
CHANGED
|
@@ -7939,17 +7939,34 @@ def chord_to_pchord(chord):
|
|
| 7939 |
|
| 7940 |
return pchord
|
| 7941 |
|
|
|
|
|
|
|
| 7942 |
def summarize_escore_notes(escore_notes,
|
| 7943 |
summary_length_in_chords=128,
|
| 7944 |
-
preserve_timings=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7945 |
):
|
| 7946 |
|
| 7947 |
cscore = chordify_score([d[1:] for d in delta_score_notes(escore_notes)])
|
| 7948 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7949 |
pchords = []
|
| 7950 |
|
| 7951 |
for c in cscore:
|
| 7952 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7953 |
|
| 7954 |
step = round(len(pchords) / summary_length_in_chords)
|
| 7955 |
|
|
@@ -7962,18 +7979,26 @@ def summarize_escore_notes(escore_notes,
|
|
| 7962 |
|
| 7963 |
for i, s in enumerate(samples):
|
| 7964 |
|
| 7965 |
-
best_chord = list(Counter(s).most_common()[0][0])
|
| 7966 |
|
| 7967 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7968 |
|
| 7969 |
if preserve_timings:
|
| 7970 |
|
| 7971 |
-
if
|
|
|
|
|
|
|
| 7972 |
|
| 7973 |
-
|
| 7974 |
|
| 7975 |
-
|
| 7976 |
-
|
| 7977 |
|
| 7978 |
else:
|
| 7979 |
|
|
|
|
| 7939 |
|
| 7940 |
return pchord
|
| 7941 |
|
| 7942 |
+
###################################################################################
|
| 7943 |
+
|
| 7944 |
def summarize_escore_notes(escore_notes,
|
| 7945 |
summary_length_in_chords=128,
|
| 7946 |
+
preserve_timings=True,
|
| 7947 |
+
preserve_durations=False,
|
| 7948 |
+
time_threshold=12,
|
| 7949 |
+
min_sum_chord_len=2,
|
| 7950 |
+
use_tones_chords=True
|
| 7951 |
):
|
| 7952 |
|
| 7953 |
cscore = chordify_score([d[1:] for d in delta_score_notes(escore_notes)])
|
| 7954 |
|
| 7955 |
+
summary_length_in_chords = min(len(cscore), summary_length_in_chords)
|
| 7956 |
+
|
| 7957 |
+
ltthresh = time_threshold // 2
|
| 7958 |
+
uttresh = time_threshold * 2
|
| 7959 |
+
|
| 7960 |
+
mc_time = Counter([c[0][0] for c in cscore if c[0][2] != 9 and ltthresh < c[0][0] < uttresh]).most_common()[0][0]
|
| 7961 |
+
|
| 7962 |
pchords = []
|
| 7963 |
|
| 7964 |
for c in cscore:
|
| 7965 |
+
if use_tones_chords:
|
| 7966 |
+
pchords.append([c[0][0]] + pitches_to_tones_chord(chord_to_pchord(c)))
|
| 7967 |
+
|
| 7968 |
+
else:
|
| 7969 |
+
pchords.append([c[0][0]] + chord_to_pchord(c))
|
| 7970 |
|
| 7971 |
step = round(len(pchords) / summary_length_in_chords)
|
| 7972 |
|
|
|
|
| 7979 |
|
| 7980 |
for i, s in enumerate(samples):
|
| 7981 |
|
| 7982 |
+
best_chord = list([v[0] for v in Counter(s).most_common() if v[0][0] == mc_time and len(v[0]) > min_sum_chord_len])
|
| 7983 |
|
| 7984 |
+
if not best_chord:
|
| 7985 |
+
best_chord = list([v[0] for v in Counter(s).most_common() if len(v[0]) > min_sum_chord_len])
|
| 7986 |
+
|
| 7987 |
+
if not best_chord:
|
| 7988 |
+
best_chord = list([Counter(s).most_common()[0][0]])
|
| 7989 |
+
|
| 7990 |
+
chord = copy.deepcopy(cscore[[ss for ss in s].index(best_chord[0])+(i*step)])
|
| 7991 |
|
| 7992 |
if preserve_timings:
|
| 7993 |
|
| 7994 |
+
if not preserve_durations:
|
| 7995 |
+
|
| 7996 |
+
if i > 0:
|
| 7997 |
|
| 7998 |
+
pchord = summarized_escore_notes[-1]
|
| 7999 |
|
| 8000 |
+
for pc in pchord:
|
| 8001 |
+
pc[1] = min(pc[1], chord[0][0])
|
| 8002 |
|
| 8003 |
else:
|
| 8004 |
|
TPLOTS.py
ADDED
|
@@ -0,0 +1,1045 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#! /usr/bin/python3
|
| 2 |
+
|
| 3 |
+
r'''############################################################################
|
| 4 |
+
################################################################################
|
| 5 |
+
#
|
| 6 |
+
#
|
| 7 |
+
# Tegridy Plots Python Module (TPLOTS)
|
| 8 |
+
# Version 1.0
|
| 9 |
+
#
|
| 10 |
+
# Project Los Angeles
|
| 11 |
+
#
|
| 12 |
+
# Tegridy Code 2024
|
| 13 |
+
#
|
| 14 |
+
# https://github.com/asigalov61/tegridy-tools
|
| 15 |
+
#
|
| 16 |
+
#
|
| 17 |
+
################################################################################
|
| 18 |
+
#
|
| 19 |
+
# Copyright 2024 Project Los Angeles / Tegridy Code
|
| 20 |
+
#
|
| 21 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 22 |
+
# you may not use this file except in compliance with the License.
|
| 23 |
+
# You may obtain a copy of the License at
|
| 24 |
+
#
|
| 25 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 26 |
+
#
|
| 27 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 28 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 29 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 30 |
+
# See the License for the specific language governing permissions and
|
| 31 |
+
# limitations under the License.
|
| 32 |
+
#
|
| 33 |
+
################################################################################
|
| 34 |
+
################################################################################
|
| 35 |
+
#
|
| 36 |
+
# Critical dependencies
|
| 37 |
+
#
|
| 38 |
+
# !pip install numpy
|
| 39 |
+
# !pip install scipy
|
| 40 |
+
# !pip install matplotlib
|
| 41 |
+
# !pip install networkx[all]
|
| 42 |
+
# !pip3 install scikit-learn
|
| 43 |
+
#
|
| 44 |
+
################################################################################
|
| 45 |
+
#
|
| 46 |
+
# Future critical dependencies
|
| 47 |
+
#
|
| 48 |
+
# !pip install umap-learn
|
| 49 |
+
# !pip install alphashape
|
| 50 |
+
#
|
| 51 |
+
################################################################################
|
| 52 |
+
'''
|
| 53 |
+
|
| 54 |
+
################################################################################
|
| 55 |
+
# Modules imports
|
| 56 |
+
################################################################################
|
| 57 |
+
|
| 58 |
+
import os
|
| 59 |
+
from collections import Counter
|
| 60 |
+
from itertools import groupby
|
| 61 |
+
|
| 62 |
+
import numpy as np
|
| 63 |
+
|
| 64 |
+
import networkx as nx
|
| 65 |
+
|
| 66 |
+
from sklearn.manifold import TSNE
|
| 67 |
+
from sklearn import metrics
|
| 68 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 69 |
+
from sklearn.decomposition import PCA
|
| 70 |
+
|
| 71 |
+
from scipy.ndimage import zoom
|
| 72 |
+
from scipy.spatial import distance_matrix
|
| 73 |
+
from scipy.sparse.csgraph import minimum_spanning_tree
|
| 74 |
+
from scipy.stats import zscore
|
| 75 |
+
|
| 76 |
+
import matplotlib.pyplot as plt
|
| 77 |
+
from PIL import Image
|
| 78 |
+
|
| 79 |
+
################################################################################
|
| 80 |
+
# Constants
|
| 81 |
+
################################################################################
|
| 82 |
+
|
| 83 |
+
ALL_CHORDS_FILTERED = [[0], [0, 3], [0, 3, 5], [0, 3, 5, 8], [0, 3, 5, 9], [0, 3, 5, 10], [0, 3, 7],
|
| 84 |
+
[0, 3, 7, 10], [0, 3, 8], [0, 3, 9], [0, 3, 10], [0, 4], [0, 4, 6],
|
| 85 |
+
[0, 4, 6, 9], [0, 4, 6, 10], [0, 4, 7], [0, 4, 7, 10], [0, 4, 8], [0, 4, 9],
|
| 86 |
+
[0, 4, 10], [0, 5], [0, 5, 8], [0, 5, 9], [0, 5, 10], [0, 6], [0, 6, 9],
|
| 87 |
+
[0, 6, 10], [0, 7], [0, 7, 10], [0, 8], [0, 9], [0, 10], [1], [1, 4],
|
| 88 |
+
[1, 4, 6], [1, 4, 6, 9], [1, 4, 6, 10], [1, 4, 6, 11], [1, 4, 7],
|
| 89 |
+
[1, 4, 7, 10], [1, 4, 7, 11], [1, 4, 8], [1, 4, 8, 11], [1, 4, 9], [1, 4, 10],
|
| 90 |
+
[1, 4, 11], [1, 5], [1, 5, 8], [1, 5, 8, 11], [1, 5, 9], [1, 5, 10],
|
| 91 |
+
[1, 5, 11], [1, 6], [1, 6, 9], [1, 6, 10], [1, 6, 11], [1, 7], [1, 7, 10],
|
| 92 |
+
[1, 7, 11], [1, 8], [1, 8, 11], [1, 9], [1, 10], [1, 11], [2], [2, 5],
|
| 93 |
+
[2, 5, 8], [2, 5, 8, 11], [2, 5, 9], [2, 5, 10], [2, 5, 11], [2, 6], [2, 6, 9],
|
| 94 |
+
[2, 6, 10], [2, 6, 11], [2, 7], [2, 7, 10], [2, 7, 11], [2, 8], [2, 8, 11],
|
| 95 |
+
[2, 9], [2, 10], [2, 11], [3], [3, 5], [3, 5, 8], [3, 5, 8, 11], [3, 5, 9],
|
| 96 |
+
[3, 5, 10], [3, 5, 11], [3, 7], [3, 7, 10], [3, 7, 11], [3, 8], [3, 8, 11],
|
| 97 |
+
[3, 9], [3, 10], [3, 11], [4], [4, 6], [4, 6, 9], [4, 6, 10], [4, 6, 11],
|
| 98 |
+
[4, 7], [4, 7, 10], [4, 7, 11], [4, 8], [4, 8, 11], [4, 9], [4, 10], [4, 11],
|
| 99 |
+
[5], [5, 8], [5, 8, 11], [5, 9], [5, 10], [5, 11], [6], [6, 9], [6, 10],
|
| 100 |
+
[6, 11], [7], [7, 10], [7, 11], [8], [8, 11], [9], [10], [11]]
|
| 101 |
+
|
| 102 |
+
################################################################################
|
| 103 |
+
|
| 104 |
+
CHORDS_TYPES = ['WHITE', 'BLACK', 'UNKNOWN', 'MIXED WHITE', 'MIXED BLACK', 'MIXED GRAY']
|
| 105 |
+
|
| 106 |
+
################################################################################
|
| 107 |
+
|
| 108 |
+
WHITE_NOTES = [0, 2, 4, 5, 7, 9, 11]
|
| 109 |
+
|
| 110 |
+
################################################################################
|
| 111 |
+
|
| 112 |
+
BLACK_NOTES = [1, 3, 6, 8, 10]
|
| 113 |
+
|
| 114 |
+
################################################################################
|
| 115 |
+
# Helper functions
|
| 116 |
+
################################################################################
|
| 117 |
+
|
| 118 |
+
def tones_chord_type(tones_chord,
|
| 119 |
+
return_chord_type_index=True,
|
| 120 |
+
):
|
| 121 |
+
|
| 122 |
+
"""
|
| 123 |
+
Returns tones chord type
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
WN = WHITE_NOTES
|
| 127 |
+
BN = BLACK_NOTES
|
| 128 |
+
MX = WHITE_NOTES + BLACK_NOTES
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
CHORDS = ALL_CHORDS_FILTERED
|
| 132 |
+
|
| 133 |
+
tones_chord = sorted(tones_chord)
|
| 134 |
+
|
| 135 |
+
ctype = 'UNKNOWN'
|
| 136 |
+
|
| 137 |
+
if tones_chord in CHORDS:
|
| 138 |
+
|
| 139 |
+
if sorted(set(tones_chord) & set(WN)) == tones_chord:
|
| 140 |
+
ctype = 'WHITE'
|
| 141 |
+
|
| 142 |
+
elif sorted(set(tones_chord) & set(BN)) == tones_chord:
|
| 143 |
+
ctype = 'BLACK'
|
| 144 |
+
|
| 145 |
+
if len(tones_chord) > 1 and sorted(set(tones_chord) & set(MX)) == tones_chord:
|
| 146 |
+
|
| 147 |
+
if len(sorted(set(tones_chord) & set(WN))) == len(sorted(set(tones_chord) & set(BN))):
|
| 148 |
+
ctype = 'MIXED GRAY'
|
| 149 |
+
|
| 150 |
+
elif len(sorted(set(tones_chord) & set(WN))) > len(sorted(set(tones_chord) & set(BN))):
|
| 151 |
+
ctype = 'MIXED WHITE'
|
| 152 |
+
|
| 153 |
+
elif len(sorted(set(tones_chord) & set(WN))) < len(sorted(set(tones_chord) & set(BN))):
|
| 154 |
+
ctype = 'MIXED BLACK'
|
| 155 |
+
|
| 156 |
+
if return_chord_type_index:
|
| 157 |
+
return CHORDS_TYPES.index(ctype)
|
| 158 |
+
|
| 159 |
+
else:
|
| 160 |
+
return ctype
|
| 161 |
+
|
| 162 |
+
###################################################################################
|
| 163 |
+
|
| 164 |
+
def tone_type(tone,
|
| 165 |
+
return_tone_type_index=True
|
| 166 |
+
):
|
| 167 |
+
|
| 168 |
+
"""
|
| 169 |
+
Returns tone type
|
| 170 |
+
"""
|
| 171 |
+
|
| 172 |
+
tone = tone % 12
|
| 173 |
+
|
| 174 |
+
if tone in BLACK_NOTES:
|
| 175 |
+
if return_tone_type_index:
|
| 176 |
+
return CHORDS_TYPES.index('BLACK')
|
| 177 |
+
else:
|
| 178 |
+
return "BLACK"
|
| 179 |
+
|
| 180 |
+
else:
|
| 181 |
+
if return_tone_type_index:
|
| 182 |
+
return CHORDS_TYPES.index('WHITE')
|
| 183 |
+
else:
|
| 184 |
+
return "WHITE"
|
| 185 |
+
|
| 186 |
+
###################################################################################
|
| 187 |
+
|
| 188 |
+
def find_closest_points(points, return_points=True):
|
| 189 |
+
|
| 190 |
+
"""
|
| 191 |
+
Find closest 2D points
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
coords = np.array(points)
|
| 195 |
+
|
| 196 |
+
num_points = coords.shape[0]
|
| 197 |
+
closest_matches = np.zeros(num_points, dtype=int)
|
| 198 |
+
distances = np.zeros((num_points, num_points))
|
| 199 |
+
|
| 200 |
+
for i in range(num_points):
|
| 201 |
+
for j in range(num_points):
|
| 202 |
+
if i != j:
|
| 203 |
+
distances[i, j] = np.linalg.norm(coords[i] - coords[j])
|
| 204 |
+
else:
|
| 205 |
+
distances[i, j] = np.inf
|
| 206 |
+
|
| 207 |
+
closest_matches = np.argmin(distances, axis=1)
|
| 208 |
+
|
| 209 |
+
if return_points:
|
| 210 |
+
points_matches = coords[closest_matches].tolist()
|
| 211 |
+
return points_matches
|
| 212 |
+
|
| 213 |
+
else:
|
| 214 |
+
return closest_matches.tolist()
|
| 215 |
+
|
| 216 |
+
################################################################################
|
| 217 |
+
|
| 218 |
+
def reduce_dimensionality_tsne(list_of_valies,
|
| 219 |
+
n_comp=2,
|
| 220 |
+
n_iter=5000,
|
| 221 |
+
verbose=True
|
| 222 |
+
):
|
| 223 |
+
|
| 224 |
+
"""
|
| 225 |
+
Reduces the dimensionality of the values using t-SNE.
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
vals = np.array(list_of_valies)
|
| 229 |
+
|
| 230 |
+
tsne = TSNE(n_components=n_comp,
|
| 231 |
+
n_iter=n_iter,
|
| 232 |
+
verbose=verbose)
|
| 233 |
+
|
| 234 |
+
reduced_vals = tsne.fit_transform(vals)
|
| 235 |
+
|
| 236 |
+
return reduced_vals.tolist()
|
| 237 |
+
|
| 238 |
+
################################################################################
|
| 239 |
+
|
| 240 |
+
def compute_mst_edges(similarity_scores_list):
|
| 241 |
+
|
| 242 |
+
"""
|
| 243 |
+
Computes the Minimum Spanning Tree (MST) edges based on the similarity scores.
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
num_tokens = len(similarity_scores_list[0])
|
| 247 |
+
|
| 248 |
+
graph = nx.Graph()
|
| 249 |
+
|
| 250 |
+
for i in range(num_tokens):
|
| 251 |
+
for j in range(i + 1, num_tokens):
|
| 252 |
+
weight = 1 - similarity_scores_list[i][j]
|
| 253 |
+
graph.add_edge(i, j, weight=weight)
|
| 254 |
+
|
| 255 |
+
mst = nx.minimum_spanning_tree(graph)
|
| 256 |
+
|
| 257 |
+
mst_edges = list(mst.edges(data=False))
|
| 258 |
+
|
| 259 |
+
return mst_edges
|
| 260 |
+
|
| 261 |
+
################################################################################
|
| 262 |
+
|
| 263 |
+
def square_binary_matrix(binary_matrix,
|
| 264 |
+
matrix_size=128,
|
| 265 |
+
interpolation_order=5,
|
| 266 |
+
return_square_matrix_points=False
|
| 267 |
+
):
|
| 268 |
+
|
| 269 |
+
"""
|
| 270 |
+
Reduces an arbitrary binary matrix to a square binary matrix
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
zoom_factors = (matrix_size / len(binary_matrix), 1)
|
| 274 |
+
|
| 275 |
+
resized_matrix = zoom(binary_matrix, zoom_factors, order=interpolation_order)
|
| 276 |
+
|
| 277 |
+
resized_matrix = (resized_matrix > 0.5).astype(int)
|
| 278 |
+
|
| 279 |
+
final_matrix = np.zeros((matrix_size, matrix_size), dtype=int)
|
| 280 |
+
final_matrix[:, :resized_matrix.shape[1]] = resized_matrix
|
| 281 |
+
|
| 282 |
+
points = np.column_stack(np.where(final_matrix == 1)).tolist()
|
| 283 |
+
|
| 284 |
+
if return_square_matrix_points:
|
| 285 |
+
return points
|
| 286 |
+
|
| 287 |
+
else:
|
| 288 |
+
return resized_matrix
|
| 289 |
+
|
| 290 |
+
################################################################################
|
| 291 |
+
|
| 292 |
+
def square_matrix_points_colors(square_matrix_points):
|
| 293 |
+
|
| 294 |
+
"""
|
| 295 |
+
Returns colors for square matrix points
|
| 296 |
+
"""
|
| 297 |
+
|
| 298 |
+
cmap = generate_colors(12)
|
| 299 |
+
|
| 300 |
+
chords = []
|
| 301 |
+
chords_dict = set()
|
| 302 |
+
counts = []
|
| 303 |
+
|
| 304 |
+
for k, v in groupby(square_matrix_points, key=lambda x: x[0]):
|
| 305 |
+
pgroup = [vv[1] for vv in v]
|
| 306 |
+
chord = sorted(set(pgroup))
|
| 307 |
+
tchord = sorted(set([p % 12 for p in chord]))
|
| 308 |
+
chords_dict.add(tuple(tchord))
|
| 309 |
+
chords.append(tuple(tchord))
|
| 310 |
+
counts.append(len(pgroup))
|
| 311 |
+
|
| 312 |
+
chords_dict = sorted(chords_dict)
|
| 313 |
+
|
| 314 |
+
colors = []
|
| 315 |
+
|
| 316 |
+
for i, c in enumerate(chords):
|
| 317 |
+
colors.extend([cmap[round(sum(c) / len(c))]] * counts[i])
|
| 318 |
+
|
| 319 |
+
return colors
|
| 320 |
+
|
| 321 |
+
################################################################################
|
| 322 |
+
|
| 323 |
+
def hsv_to_rgb(h, s, v):
|
| 324 |
+
|
| 325 |
+
if s == 0.0:
|
| 326 |
+
return v, v, v
|
| 327 |
+
|
| 328 |
+
i = int(h*6.0)
|
| 329 |
+
f = (h*6.0) - i
|
| 330 |
+
p = v*(1.0 - s)
|
| 331 |
+
q = v*(1.0 - s*f)
|
| 332 |
+
t = v*(1.0 - s*(1.0-f))
|
| 333 |
+
i = i%6
|
| 334 |
+
|
| 335 |
+
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]
|
| 336 |
+
|
| 337 |
+
################################################################################
|
| 338 |
+
|
| 339 |
+
def generate_colors(n):
|
| 340 |
+
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]
|
| 341 |
+
|
| 342 |
+
################################################################################
|
| 343 |
+
|
| 344 |
+
def add_arrays(a, b):
|
| 345 |
+
return [sum(pair) for pair in zip(a, b)]
|
| 346 |
+
|
| 347 |
+
################################################################################
|
| 348 |
+
|
| 349 |
+
def calculate_similarities(lists_of_values, metric='cosine'):
|
| 350 |
+
return metrics.pairwise_distances(lists_of_values, metric=metric).tolist()
|
| 351 |
+
|
| 352 |
+
################################################################################
|
| 353 |
+
|
| 354 |
+
def get_tokens_embeddings(x_transformer_model):
|
| 355 |
+
return x_transformer_model.net.token_emb.emb.weight.detach().cpu().tolist()
|
| 356 |
+
|
| 357 |
+
################################################################################
|
| 358 |
+
|
| 359 |
+
def minkowski_distance_matrix(X, p=3):
|
| 360 |
+
|
| 361 |
+
X = np.array(X)
|
| 362 |
+
|
| 363 |
+
n = X.shape[0]
|
| 364 |
+
dist_matrix = np.zeros((n, n))
|
| 365 |
+
|
| 366 |
+
for i in range(n):
|
| 367 |
+
for j in range(n):
|
| 368 |
+
dist_matrix[i, j] = np.sum(np.abs(X[i] - X[j])**p)**(1/p)
|
| 369 |
+
|
| 370 |
+
return dist_matrix.tolist()
|
| 371 |
+
|
| 372 |
+
################################################################################
|
| 373 |
+
|
| 374 |
+
def robust_normalize(values):
|
| 375 |
+
|
| 376 |
+
values = np.array(values)
|
| 377 |
+
q1 = np.percentile(values, 25)
|
| 378 |
+
q3 = np.percentile(values, 75)
|
| 379 |
+
iqr = q3 - q1
|
| 380 |
+
|
| 381 |
+
filtered_values = values[(values >= q1 - 1.5 * iqr) & (values <= q3 + 1.5 * iqr)]
|
| 382 |
+
|
| 383 |
+
min_val = np.min(filtered_values)
|
| 384 |
+
max_val = np.max(filtered_values)
|
| 385 |
+
normalized_values = (values - min_val) / (max_val - min_val)
|
| 386 |
+
|
| 387 |
+
normalized_values = np.clip(normalized_values, 0, 1)
|
| 388 |
+
|
| 389 |
+
return normalized_values.tolist()
|
| 390 |
+
|
| 391 |
+
################################################################################
|
| 392 |
+
|
| 393 |
+
def min_max_normalize(values):
|
| 394 |
+
|
| 395 |
+
scaler = MinMaxScaler()
|
| 396 |
+
|
| 397 |
+
return scaler.fit_transform(values).tolist()
|
| 398 |
+
|
| 399 |
+
################################################################################
|
| 400 |
+
|
| 401 |
+
def remove_points_outliers(points, z_score_threshold=3):
|
| 402 |
+
|
| 403 |
+
points = np.array(points)
|
| 404 |
+
|
| 405 |
+
z_scores = np.abs(zscore(points, axis=0))
|
| 406 |
+
|
| 407 |
+
return points[(z_scores < z_score_threshold).all(axis=1)].tolist()
|
| 408 |
+
|
| 409 |
+
################################################################################
|
| 410 |
+
|
| 411 |
+
def generate_labels(lists_of_values,
|
| 412 |
+
return_indices_labels=False
|
| 413 |
+
):
|
| 414 |
+
|
| 415 |
+
ordered_indices = list(range(len(lists_of_values)))
|
| 416 |
+
ordered_indices_labels = [str(i) for i in ordered_indices]
|
| 417 |
+
ordered_values_labels = [str(lists_of_values[i]) for i in ordered_indices]
|
| 418 |
+
|
| 419 |
+
if return_indices_labels:
|
| 420 |
+
return ordered_indices_labels
|
| 421 |
+
|
| 422 |
+
else:
|
| 423 |
+
return ordered_values_labels
|
| 424 |
+
|
| 425 |
+
################################################################################
|
| 426 |
+
|
| 427 |
+
def reduce_dimensionality_pca(list_of_values, n_components=2):
|
| 428 |
+
|
| 429 |
+
"""
|
| 430 |
+
Reduces the dimensionality of the values using PCA.
|
| 431 |
+
"""
|
| 432 |
+
|
| 433 |
+
pca = PCA(n_components=n_components)
|
| 434 |
+
pca_data = pca.fit_transform(list_of_values)
|
| 435 |
+
|
| 436 |
+
return pca_data.tolist()
|
| 437 |
+
|
| 438 |
+
def reduce_dimensionality_simple(list_of_values,
|
| 439 |
+
return_means=True,
|
| 440 |
+
return_std_devs=True,
|
| 441 |
+
return_medians=False,
|
| 442 |
+
return_vars=False
|
| 443 |
+
):
|
| 444 |
+
|
| 445 |
+
'''
|
| 446 |
+
Reduces dimensionality of the values in a simple way
|
| 447 |
+
'''
|
| 448 |
+
|
| 449 |
+
array = np.array(list_of_values)
|
| 450 |
+
results = []
|
| 451 |
+
|
| 452 |
+
if return_means:
|
| 453 |
+
means = np.mean(array, axis=1)
|
| 454 |
+
results.append(means)
|
| 455 |
+
|
| 456 |
+
if return_std_devs:
|
| 457 |
+
std_devs = np.std(array, axis=1)
|
| 458 |
+
results.append(std_devs)
|
| 459 |
+
|
| 460 |
+
if return_medians:
|
| 461 |
+
medians = np.median(array, axis=1)
|
| 462 |
+
results.append(medians)
|
| 463 |
+
|
| 464 |
+
if return_vars:
|
| 465 |
+
vars = np.var(array, axis=1)
|
| 466 |
+
results.append(vars)
|
| 467 |
+
|
| 468 |
+
merged_results = np.column_stack(results)
|
| 469 |
+
|
| 470 |
+
return merged_results.tolist()
|
| 471 |
+
|
| 472 |
+
################################################################################
|
| 473 |
+
|
| 474 |
+
def reduce_dimensionality_2d_distance(list_of_values, p=5):
|
| 475 |
+
|
| 476 |
+
'''
|
| 477 |
+
Reduces the dimensionality of the values using 2d distance
|
| 478 |
+
'''
|
| 479 |
+
|
| 480 |
+
values = np.array(list_of_values)
|
| 481 |
+
|
| 482 |
+
dist_matrix = distance_matrix(values, values, p=p)
|
| 483 |
+
|
| 484 |
+
mst = minimum_spanning_tree(dist_matrix).toarray()
|
| 485 |
+
|
| 486 |
+
points = []
|
| 487 |
+
|
| 488 |
+
for i in range(len(values)):
|
| 489 |
+
for j in range(len(values)):
|
| 490 |
+
if mst[i, j] > 0:
|
| 491 |
+
points.append([i, j])
|
| 492 |
+
|
| 493 |
+
return points
|
| 494 |
+
|
| 495 |
+
################################################################################
|
| 496 |
+
|
| 497 |
+
def normalize_to_range(values, n):
|
| 498 |
+
|
| 499 |
+
min_val = min(values)
|
| 500 |
+
max_val = max(values)
|
| 501 |
+
|
| 502 |
+
range_val = max_val - min_val
|
| 503 |
+
|
| 504 |
+
normalized_values = [((value - min_val) / range_val * 2 * n) - n for value in values]
|
| 505 |
+
|
| 506 |
+
return normalized_values
|
| 507 |
+
|
| 508 |
+
################################################################################
|
| 509 |
+
|
| 510 |
+
def reduce_dimensionality_simple_pca(list_of_values, n_components=2):
|
| 511 |
+
|
| 512 |
+
'''
|
| 513 |
+
Reduces the dimensionality of the values using simple PCA
|
| 514 |
+
'''
|
| 515 |
+
|
| 516 |
+
reduced_values = []
|
| 517 |
+
|
| 518 |
+
for l in list_of_values:
|
| 519 |
+
|
| 520 |
+
norm_values = [round(v * len(l)) for v in normalize_to_range(l, (n_components+1) // 2)]
|
| 521 |
+
|
| 522 |
+
pca_values = Counter(norm_values).most_common()
|
| 523 |
+
pca_values = [vv[0] / len(l) for vv in pca_values]
|
| 524 |
+
pca_values = pca_values[:n_components]
|
| 525 |
+
pca_values = pca_values + [0] * (n_components - len(pca_values))
|
| 526 |
+
|
| 527 |
+
reduced_values.append(pca_values)
|
| 528 |
+
|
| 529 |
+
return reduced_values
|
| 530 |
+
|
| 531 |
+
################################################################################
|
| 532 |
+
|
| 533 |
+
def filter_and_replace_values(list_of_values,
|
| 534 |
+
threshold,
|
| 535 |
+
replace_value,
|
| 536 |
+
replace_above_threshold=False
|
| 537 |
+
):
|
| 538 |
+
|
| 539 |
+
array = np.array(list_of_values)
|
| 540 |
+
|
| 541 |
+
modified_array = np.copy(array)
|
| 542 |
+
|
| 543 |
+
if replace_above_threshold:
|
| 544 |
+
modified_array[modified_array > threshold] = replace_value
|
| 545 |
+
|
| 546 |
+
else:
|
| 547 |
+
modified_array[modified_array < threshold] = replace_value
|
| 548 |
+
|
| 549 |
+
return modified_array.tolist()
|
| 550 |
+
|
| 551 |
+
################################################################################
|
| 552 |
+
|
| 553 |
+
def find_shortest_constellation_path(points,
|
| 554 |
+
start_point_idx,
|
| 555 |
+
end_point_idx,
|
| 556 |
+
p=5,
|
| 557 |
+
return_path_length=False,
|
| 558 |
+
return_path_points=False,
|
| 559 |
+
):
|
| 560 |
+
|
| 561 |
+
"""
|
| 562 |
+
Finds the shortest path between two points of the points constellation
|
| 563 |
+
"""
|
| 564 |
+
|
| 565 |
+
points = np.array(points)
|
| 566 |
+
|
| 567 |
+
dist_matrix = distance_matrix(points, points, p=p)
|
| 568 |
+
|
| 569 |
+
mst = minimum_spanning_tree(dist_matrix).toarray()
|
| 570 |
+
|
| 571 |
+
G = nx.Graph()
|
| 572 |
+
|
| 573 |
+
for i in range(len(points)):
|
| 574 |
+
for j in range(len(points)):
|
| 575 |
+
if mst[i, j] > 0:
|
| 576 |
+
G.add_edge(i, j, weight=mst[i, j])
|
| 577 |
+
|
| 578 |
+
path = nx.shortest_path(G,
|
| 579 |
+
source=start_point_idx,
|
| 580 |
+
target=end_point_idx,
|
| 581 |
+
weight='weight'
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
path_length = nx.shortest_path_length(G,
|
| 585 |
+
source=start_point_idx,
|
| 586 |
+
target=end_point_idx,
|
| 587 |
+
weight='weight')
|
| 588 |
+
|
| 589 |
+
path_points = points[np.array(path)].tolist()
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
if return_path_points:
|
| 593 |
+
return path_points
|
| 594 |
+
|
| 595 |
+
if return_path_length:
|
| 596 |
+
return path_length
|
| 597 |
+
|
| 598 |
+
return path
|
| 599 |
+
|
| 600 |
+
################################################################################
|
| 601 |
+
# Core functions
|
| 602 |
+
################################################################################
|
| 603 |
+
|
| 604 |
+
def plot_ms_SONG(ms_song,
|
| 605 |
+
preview_length_in_notes=0,
|
| 606 |
+
block_lines_times_list = None,
|
| 607 |
+
plot_title='ms Song',
|
| 608 |
+
max_num_colors=129,
|
| 609 |
+
drums_color_num=128,
|
| 610 |
+
plot_size=(11,4),
|
| 611 |
+
note_height = 0.75,
|
| 612 |
+
show_grid_lines=False,
|
| 613 |
+
return_plt = False,
|
| 614 |
+
timings_multiplier=1,
|
| 615 |
+
save_plt='',
|
| 616 |
+
save_only_plt_image=True,
|
| 617 |
+
save_transparent=False
|
| 618 |
+
):
|
| 619 |
+
|
| 620 |
+
'''ms SONG plot'''
|
| 621 |
+
|
| 622 |
+
notes = [s for s in ms_song if s[0] == 'note']
|
| 623 |
+
|
| 624 |
+
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
|
| 625 |
+
print('The song notes do not have patches information')
|
| 626 |
+
print('Ploease add patches to the notes in the song')
|
| 627 |
+
|
| 628 |
+
else:
|
| 629 |
+
|
| 630 |
+
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes]
|
| 631 |
+
durations = [(s[2] * timings_multiplier) / 1000 for s in notes]
|
| 632 |
+
pitches = [s[4] for s in notes]
|
| 633 |
+
patches = [s[6] for s in notes]
|
| 634 |
+
|
| 635 |
+
colors = generate_colors(max_num_colors)
|
| 636 |
+
colors[drums_color_num] = (1, 1, 1)
|
| 637 |
+
|
| 638 |
+
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000
|
| 639 |
+
|
| 640 |
+
fig, ax = plt.subplots(figsize=plot_size)
|
| 641 |
+
|
| 642 |
+
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
|
| 643 |
+
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
|
| 644 |
+
ax.add_patch(rect)
|
| 645 |
+
|
| 646 |
+
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
|
| 647 |
+
ax.set_ylim([min(pitches)-1, max(pitches)+1])
|
| 648 |
+
|
| 649 |
+
ax.set_facecolor('black')
|
| 650 |
+
fig.patch.set_facecolor('white')
|
| 651 |
+
|
| 652 |
+
if preview_length_in_notes > 0:
|
| 653 |
+
ax.axvline(x=pbl, c='white')
|
| 654 |
+
|
| 655 |
+
if block_lines_times_list:
|
| 656 |
+
for bl in block_lines_times_list:
|
| 657 |
+
ax.axvline(x=bl, c='white')
|
| 658 |
+
|
| 659 |
+
if show_grid_lines:
|
| 660 |
+
ax.grid(color='white')
|
| 661 |
+
|
| 662 |
+
plt.xlabel('Time (s)', c='black')
|
| 663 |
+
plt.ylabel('MIDI Pitch', c='black')
|
| 664 |
+
|
| 665 |
+
plt.title(plot_title)
|
| 666 |
+
|
| 667 |
+
if save_plt != '':
|
| 668 |
+
if save_only_plt_image:
|
| 669 |
+
plt.axis('off')
|
| 670 |
+
plt.title('')
|
| 671 |
+
plt.savefig(save_plt,
|
| 672 |
+
transparent=save_transparent,
|
| 673 |
+
bbox_inches='tight',
|
| 674 |
+
pad_inches=0,
|
| 675 |
+
facecolor='black'
|
| 676 |
+
)
|
| 677 |
+
plt.close()
|
| 678 |
+
|
| 679 |
+
else:
|
| 680 |
+
plt.savefig(save_plt)
|
| 681 |
+
plt.close()
|
| 682 |
+
|
| 683 |
+
if return_plt:
|
| 684 |
+
return fig
|
| 685 |
+
|
| 686 |
+
plt.show()
|
| 687 |
+
plt.close()
|
| 688 |
+
|
| 689 |
+
################################################################################
|
| 690 |
+
|
| 691 |
+
def plot_square_matrix_points(list_of_points,
|
| 692 |
+
list_of_points_colors,
|
| 693 |
+
plot_size=(7, 7),
|
| 694 |
+
point_size = 10,
|
| 695 |
+
show_grid_lines=False,
|
| 696 |
+
plot_title = 'Square Matrix Points Plot',
|
| 697 |
+
return_plt=False,
|
| 698 |
+
save_plt='',
|
| 699 |
+
save_only_plt_image=True,
|
| 700 |
+
save_transparent=False
|
| 701 |
+
):
|
| 702 |
+
|
| 703 |
+
'''Square matrix points plot'''
|
| 704 |
+
|
| 705 |
+
fig, ax = plt.subplots(figsize=plot_size)
|
| 706 |
+
|
| 707 |
+
ax.set_facecolor('black')
|
| 708 |
+
|
| 709 |
+
if show_grid_lines:
|
| 710 |
+
ax.grid(color='white')
|
| 711 |
+
|
| 712 |
+
plt.xlabel('Time Step', c='black')
|
| 713 |
+
plt.ylabel('MIDI Pitch', c='black')
|
| 714 |
+
|
| 715 |
+
plt.title(plot_title)
|
| 716 |
+
|
| 717 |
+
plt.scatter([p[0] for p in list_of_points],
|
| 718 |
+
[p[1] for p in list_of_points],
|
| 719 |
+
c=list_of_points_colors,
|
| 720 |
+
s=point_size
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
if save_plt != '':
|
| 724 |
+
if save_only_plt_image:
|
| 725 |
+
plt.axis('off')
|
| 726 |
+
plt.title('')
|
| 727 |
+
plt.savefig(save_plt,
|
| 728 |
+
transparent=save_transparent,
|
| 729 |
+
bbox_inches='tight',
|
| 730 |
+
pad_inches=0,
|
| 731 |
+
facecolor='black'
|
| 732 |
+
)
|
| 733 |
+
plt.close()
|
| 734 |
+
|
| 735 |
+
else:
|
| 736 |
+
plt.savefig(save_plt)
|
| 737 |
+
plt.close()
|
| 738 |
+
|
| 739 |
+
if return_plt:
|
| 740 |
+
return fig
|
| 741 |
+
|
| 742 |
+
plt.show()
|
| 743 |
+
plt.close()
|
| 744 |
+
|
| 745 |
+
################################################################################
|
| 746 |
+
|
| 747 |
+
def plot_cosine_similarities(lists_of_values,
|
| 748 |
+
plot_size=(7, 7),
|
| 749 |
+
save_plot=''
|
| 750 |
+
):
|
| 751 |
+
|
| 752 |
+
"""
|
| 753 |
+
Cosine similarities plot
|
| 754 |
+
"""
|
| 755 |
+
|
| 756 |
+
cos_sim = metrics.pairwise_distances(lists_of_values, metric='cosine')
|
| 757 |
+
|
| 758 |
+
plt.figure(figsize=plot_size)
|
| 759 |
+
|
| 760 |
+
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
|
| 761 |
+
|
| 762 |
+
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
|
| 763 |
+
|
| 764 |
+
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
|
| 765 |
+
|
| 766 |
+
plt.xlabel("Index")
|
| 767 |
+
plt.ylabel("Index")
|
| 768 |
+
|
| 769 |
+
plt.tight_layout()
|
| 770 |
+
|
| 771 |
+
if save_plot != '':
|
| 772 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
| 773 |
+
plt.close()
|
| 774 |
+
|
| 775 |
+
plt.show()
|
| 776 |
+
plt.close()
|
| 777 |
+
|
| 778 |
+
################################################################################
|
| 779 |
+
|
| 780 |
+
def plot_points_with_mst_lines(points,
|
| 781 |
+
points_labels,
|
| 782 |
+
points_mst_edges,
|
| 783 |
+
plot_size=(20, 20),
|
| 784 |
+
labels_size=24,
|
| 785 |
+
save_plot=''
|
| 786 |
+
):
|
| 787 |
+
|
| 788 |
+
"""
|
| 789 |
+
Plots 2D points with labels and MST lines.
|
| 790 |
+
"""
|
| 791 |
+
|
| 792 |
+
plt.figure(figsize=plot_size)
|
| 793 |
+
|
| 794 |
+
for i, label in enumerate(points_labels):
|
| 795 |
+
plt.scatter(points[i][0], points[i][1])
|
| 796 |
+
plt.annotate(label, (points[i][0], points[i][1]), fontsize=labels_size)
|
| 797 |
+
|
| 798 |
+
for edge in points_mst_edges:
|
| 799 |
+
i, j = edge
|
| 800 |
+
plt.plot([points[i][0], points[j][0]], [points[i][1], points[j][1]], 'k-', alpha=0.5)
|
| 801 |
+
|
| 802 |
+
plt.title('Points Map with MST Lines', fontsize=labels_size)
|
| 803 |
+
plt.xlabel('X-axis', fontsize=labels_size)
|
| 804 |
+
plt.ylabel('Y-axis', fontsize=labels_size)
|
| 805 |
+
|
| 806 |
+
if save_plot != '':
|
| 807 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
| 808 |
+
plt.close()
|
| 809 |
+
|
| 810 |
+
plt.show()
|
| 811 |
+
|
| 812 |
+
plt.close()
|
| 813 |
+
|
| 814 |
+
################################################################################
|
| 815 |
+
|
| 816 |
+
def plot_points_constellation(points,
|
| 817 |
+
points_labels,
|
| 818 |
+
p=5,
|
| 819 |
+
plot_size=(15, 15),
|
| 820 |
+
labels_size=12,
|
| 821 |
+
show_grid=False,
|
| 822 |
+
save_plot=''
|
| 823 |
+
):
|
| 824 |
+
|
| 825 |
+
"""
|
| 826 |
+
Plots 2D points constellation
|
| 827 |
+
"""
|
| 828 |
+
|
| 829 |
+
points = np.array(points)
|
| 830 |
+
|
| 831 |
+
dist_matrix = distance_matrix(points, points, p=p)
|
| 832 |
+
|
| 833 |
+
mst = minimum_spanning_tree(dist_matrix).toarray()
|
| 834 |
+
|
| 835 |
+
plt.figure(figsize=plot_size)
|
| 836 |
+
|
| 837 |
+
plt.scatter(points[:, 0], points[:, 1], color='blue')
|
| 838 |
+
|
| 839 |
+
for i, label in enumerate(points_labels):
|
| 840 |
+
plt.annotate(label, (points[i, 0], points[i, 1]),
|
| 841 |
+
textcoords="offset points",
|
| 842 |
+
xytext=(0, 10),
|
| 843 |
+
ha='center',
|
| 844 |
+
fontsize=labels_size
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
for i in range(len(points)):
|
| 848 |
+
for j in range(len(points)):
|
| 849 |
+
if mst[i, j] > 0:
|
| 850 |
+
plt.plot([points[i, 0], points[j, 0]], [points[i, 1], points[j, 1]], 'k--')
|
| 851 |
+
|
| 852 |
+
plt.xlabel('X-axis', fontsize=labels_size)
|
| 853 |
+
plt.ylabel('Y-axis', fontsize=labels_size)
|
| 854 |
+
plt.title('2D Coordinates with Minimum Spanning Tree', fontsize=labels_size)
|
| 855 |
+
|
| 856 |
+
plt.grid(show_grid)
|
| 857 |
+
|
| 858 |
+
if save_plot != '':
|
| 859 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
| 860 |
+
plt.close()
|
| 861 |
+
|
| 862 |
+
plt.show()
|
| 863 |
+
|
| 864 |
+
plt.close()
|
| 865 |
+
|
| 866 |
+
################################################################################
|
| 867 |
+
|
| 868 |
+
def binary_matrix_to_images(matrix,
|
| 869 |
+
step,
|
| 870 |
+
overlap,
|
| 871 |
+
output_folder='./Dataset/',
|
| 872 |
+
output_img_prefix='image',
|
| 873 |
+
output_img_ext='.png',
|
| 874 |
+
save_to_array=False,
|
| 875 |
+
verbose=True
|
| 876 |
+
):
|
| 877 |
+
|
| 878 |
+
if not save_to_array:
|
| 879 |
+
|
| 880 |
+
if verbose:
|
| 881 |
+
print('=' * 70)
|
| 882 |
+
print('Checking output folder dir...')
|
| 883 |
+
|
| 884 |
+
os.makedirs(os.path.dirname(output_folder), exist_ok=True)
|
| 885 |
+
|
| 886 |
+
if verbose:
|
| 887 |
+
print('Done!')
|
| 888 |
+
|
| 889 |
+
if verbose:
|
| 890 |
+
print('=' * 70)
|
| 891 |
+
print('Writing images...')
|
| 892 |
+
|
| 893 |
+
matrix = np.array(matrix, dtype=np.uint8)
|
| 894 |
+
|
| 895 |
+
image_array = []
|
| 896 |
+
|
| 897 |
+
for i in range(0, max(1, matrix.shape[0]-max(step, overlap)), overlap):
|
| 898 |
+
|
| 899 |
+
submatrix = matrix[i:i+step, :]
|
| 900 |
+
|
| 901 |
+
img = Image.fromarray(submatrix * 255).convert('1')
|
| 902 |
+
|
| 903 |
+
if save_to_array:
|
| 904 |
+
image_array.append(np.array(img))
|
| 905 |
+
|
| 906 |
+
else:
|
| 907 |
+
img.save(output_folder + output_img_prefix + '_' + str(matrix.shape[1]) + '_' + str(i).zfill(7) + output_img_ext)
|
| 908 |
+
|
| 909 |
+
if verbose:
|
| 910 |
+
print('Done!')
|
| 911 |
+
print('=' * 70)
|
| 912 |
+
print('Saved', (matrix.shape[0]-max(step, overlap)) // min(step, overlap)+1, 'imges!')
|
| 913 |
+
print('=' * 70)
|
| 914 |
+
|
| 915 |
+
if save_to_array:
|
| 916 |
+
return np.array(image_array).tolist()
|
| 917 |
+
|
| 918 |
+
################################################################################
|
| 919 |
+
|
| 920 |
+
def images_to_binary_matrix(list_of_images):
|
| 921 |
+
|
| 922 |
+
image_array = np.array(list_of_images)
|
| 923 |
+
|
| 924 |
+
original_matrix = []
|
| 925 |
+
|
| 926 |
+
for img in image_array:
|
| 927 |
+
|
| 928 |
+
submatrix = np.array(img)
|
| 929 |
+
original_matrix.extend(submatrix.tolist())
|
| 930 |
+
|
| 931 |
+
return original_matrix
|
| 932 |
+
|
| 933 |
+
################################################################################
|
| 934 |
+
# [WIP] Future dev functions
|
| 935 |
+
################################################################################
|
| 936 |
+
|
| 937 |
+
'''
|
| 938 |
+
import umap
|
| 939 |
+
|
| 940 |
+
def reduce_dimensionality_umap(list_of_values,
|
| 941 |
+
n_comp=2,
|
| 942 |
+
n_neighbors=15,
|
| 943 |
+
):
|
| 944 |
+
|
| 945 |
+
"""
|
| 946 |
+
Reduces the dimensionality of the values using UMAP.
|
| 947 |
+
"""
|
| 948 |
+
|
| 949 |
+
vals = np.array(list_of_values)
|
| 950 |
+
|
| 951 |
+
umap_reducer = umap.UMAP(n_components=n_comp,
|
| 952 |
+
n_neighbors=n_neighbors,
|
| 953 |
+
n_epochs=5000,
|
| 954 |
+
verbose=True
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
reduced_vals = umap_reducer.fit_transform(vals)
|
| 958 |
+
|
| 959 |
+
return reduced_vals.tolist()
|
| 960 |
+
'''
|
| 961 |
+
|
| 962 |
+
################################################################################
|
| 963 |
+
|
| 964 |
+
'''
|
| 965 |
+
import alphashape
|
| 966 |
+
from shapely.geometry import Point
|
| 967 |
+
from matplotlib.tri import Triangulation, LinearTriInterpolator
|
| 968 |
+
from scipy.stats import zscore
|
| 969 |
+
|
| 970 |
+
#===============================================================================
|
| 971 |
+
|
| 972 |
+
coordinates = points
|
| 973 |
+
|
| 974 |
+
dist_matrix = minkowski_distance_matrix(coordinates, p=3) # You can change the value of p as needed
|
| 975 |
+
|
| 976 |
+
# Centering matrix
|
| 977 |
+
n = dist_matrix.shape[0]
|
| 978 |
+
H = np.eye(n) - np.ones((n, n)) / n
|
| 979 |
+
|
| 980 |
+
# Apply double centering
|
| 981 |
+
B = -0.5 * H @ dist_matrix**2 @ H
|
| 982 |
+
|
| 983 |
+
# Eigen decomposition
|
| 984 |
+
eigvals, eigvecs = np.linalg.eigh(B)
|
| 985 |
+
|
| 986 |
+
# Sort eigenvalues and eigenvectors
|
| 987 |
+
idx = np.argsort(eigvals)[::-1]
|
| 988 |
+
eigvals = eigvals[idx]
|
| 989 |
+
eigvecs = eigvecs[:, idx]
|
| 990 |
+
|
| 991 |
+
# Select the top 2 eigenvectors
|
| 992 |
+
X_transformed = eigvecs[:, :2] * np.sqrt(eigvals[:2])
|
| 993 |
+
|
| 994 |
+
#===============================================================================
|
| 995 |
+
|
| 996 |
+
src_points = X_transformed
|
| 997 |
+
src_values = np.array([[p[1]] for p in points]) #np.random.rand(X_transformed.shape[0])
|
| 998 |
+
|
| 999 |
+
#===============================================================================
|
| 1000 |
+
|
| 1001 |
+
# Normalize the points to the range [0, 1]
|
| 1002 |
+
scaler = MinMaxScaler()
|
| 1003 |
+
points_normalized = scaler.fit_transform(src_points)
|
| 1004 |
+
|
| 1005 |
+
values_normalized = custom_normalize(src_values)
|
| 1006 |
+
|
| 1007 |
+
# Remove outliers based on z-score
|
| 1008 |
+
z_scores = np.abs(zscore(points_normalized, axis=0))
|
| 1009 |
+
filtered_points = points_normalized[(z_scores < 3).all(axis=1)]
|
| 1010 |
+
filtered_values = values_normalized[(z_scores < 3).all(axis=1)]
|
| 1011 |
+
|
| 1012 |
+
# Compute the concave hull (alpha shape)
|
| 1013 |
+
alpha = 8 # Adjust alpha as needed
|
| 1014 |
+
hull = alphashape.alphashape(filtered_points, alpha)
|
| 1015 |
+
|
| 1016 |
+
# Create a triangulation
|
| 1017 |
+
tri = Triangulation(filtered_points[:, 0], filtered_points[:, 1])
|
| 1018 |
+
|
| 1019 |
+
# Interpolate the values on the triangulation
|
| 1020 |
+
interpolator = LinearTriInterpolator(tri, filtered_values[:, 0])
|
| 1021 |
+
xi, yi = np.meshgrid(np.linspace(0, 1, 100), np.linspace(0, 1, 100))
|
| 1022 |
+
zi = interpolator(xi, yi)
|
| 1023 |
+
|
| 1024 |
+
# Mask out points outside the concave hull
|
| 1025 |
+
mask = np.array([hull.contains(Point(x, y)) for x, y in zip(xi.flatten(), yi.flatten())])
|
| 1026 |
+
zi = np.ma.array(zi, mask=~mask.reshape(zi.shape))
|
| 1027 |
+
|
| 1028 |
+
# Plot the filled contour based on the interpolated values
|
| 1029 |
+
plt.contourf(xi, yi, zi, levels=50, cmap='viridis')
|
| 1030 |
+
|
| 1031 |
+
# Plot the original points
|
| 1032 |
+
#plt.scatter(filtered_points[:, 0], filtered_points[:, 1], c=filtered_values, edgecolors='k')
|
| 1033 |
+
|
| 1034 |
+
plt.title('Filled Contour Plot with Original Values')
|
| 1035 |
+
plt.xlabel('X-axis')
|
| 1036 |
+
plt.ylabel('Y-axis')
|
| 1037 |
+
plt.colorbar(label='Value')
|
| 1038 |
+
plt.show()
|
| 1039 |
+
'''
|
| 1040 |
+
|
| 1041 |
+
################################################################################
|
| 1042 |
+
#
|
| 1043 |
+
# This is the end of TPLOTS Python modules
|
| 1044 |
+
#
|
| 1045 |
+
################################################################################
|