Spaces:
Running
Running
| /** | |
| * @author renej | |
| * NURBS utils | |
| * | |
| * See NURBSCurve and NURBSSurface. | |
| * | |
| **/ | |
| /************************************************************** | |
| * NURBS Utils | |
| **************************************************************/ | |
| THREE.NURBSUtils = { | |
| /* | |
| Finds knot vector span. | |
| p : degree | |
| u : parametric value | |
| U : knot vector | |
| returns the span | |
| */ | |
| findSpan: function( p, u, U ) { | |
| var n = U.length - p - 1; | |
| if ( u >= U[ n ] ) { | |
| return n - 1; | |
| } | |
| if ( u <= U[ p ] ) { | |
| return p; | |
| } | |
| var low = p; | |
| var high = n; | |
| var mid = Math.floor( ( low + high ) / 2 ); | |
| while ( u < U[ mid ] || u >= U[ mid + 1 ] ) { | |
| if ( u < U[ mid ] ) { | |
| high = mid; | |
| } else { | |
| low = mid; | |
| } | |
| mid = Math.floor( ( low + high ) / 2 ); | |
| } | |
| return mid; | |
| }, | |
| /* | |
| Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2 | |
| span : span in which u lies | |
| u : parametric point | |
| p : degree | |
| U : knot vector | |
| returns array[p+1] with basis functions values. | |
| */ | |
| calcBasisFunctions: function( span, u, p, U ) { | |
| var N = []; | |
| var left = []; | |
| var right = []; | |
| N[ 0 ] = 1.0; | |
| for ( var j = 1; j <= p; ++ j ) { | |
| left[ j ] = u - U[ span + 1 - j ]; | |
| right[ j ] = U[ span + j ] - u; | |
| var saved = 0.0; | |
| for ( var r = 0; r < j; ++ r ) { | |
| var rv = right[ r + 1 ]; | |
| var lv = left[ j - r ]; | |
| var temp = N[ r ] / ( rv + lv ); | |
| N[ r ] = saved + rv * temp; | |
| saved = lv * temp; | |
| } | |
| N[ j ] = saved; | |
| } | |
| return N; | |
| }, | |
| /* | |
| Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1. | |
| p : degree of B-Spline | |
| U : knot vector | |
| P : control points (x, y, z, w) | |
| u : parametric point | |
| returns point for given u | |
| */ | |
| calcBSplinePoint: function( p, U, P, u ) { | |
| var span = this.findSpan( p, u, U ); | |
| var N = this.calcBasisFunctions( span, u, p, U ); | |
| var C = new THREE.Vector4( 0, 0, 0, 0 ); | |
| for ( var j = 0; j <= p; ++ j ) { | |
| var point = P[ span - p + j ]; | |
| var Nj = N[ j ]; | |
| var wNj = point.w * Nj; | |
| C.x += point.x * wNj; | |
| C.y += point.y * wNj; | |
| C.z += point.z * wNj; | |
| C.w += point.w * Nj; | |
| } | |
| return C; | |
| }, | |
| /* | |
| Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3. | |
| span : span in which u lies | |
| u : parametric point | |
| p : degree | |
| n : number of derivatives to calculate | |
| U : knot vector | |
| returns array[n+1][p+1] with basis functions derivatives | |
| */ | |
| calcBasisFunctionDerivatives: function( span, u, p, n, U ) { | |
| var zeroArr = []; | |
| for ( var i = 0; i <= p; ++ i ) | |
| zeroArr[ i ] = 0.0; | |
| var ders = []; | |
| for ( var i = 0; i <= n; ++ i ) | |
| ders[ i ] = zeroArr.slice( 0 ); | |
| var ndu = []; | |
| for ( var i = 0; i <= p; ++ i ) | |
| ndu[ i ] = zeroArr.slice( 0 ); | |
| ndu[ 0 ][ 0 ] = 1.0; | |
| var left = zeroArr.slice( 0 ); | |
| var right = zeroArr.slice( 0 ); | |
| for ( var j = 1; j <= p; ++ j ) { | |
| left[ j ] = u - U[ span + 1 - j ]; | |
| right[ j ] = U[ span + j ] - u; | |
| var saved = 0.0; | |
| for ( var r = 0; r < j; ++ r ) { | |
| var rv = right[ r + 1 ]; | |
| var lv = left[ j - r ]; | |
| ndu[ j ][ r ] = rv + lv; | |
| var temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ]; | |
| ndu[ r ][ j ] = saved + rv * temp; | |
| saved = lv * temp; | |
| } | |
| ndu[ j ][ j ] = saved; | |
| } | |
| for ( var j = 0; j <= p; ++ j ) { | |
| ders[ 0 ][ j ] = ndu[ j ][ p ]; | |
| } | |
| for ( var r = 0; r <= p; ++ r ) { | |
| var s1 = 0; | |
| var s2 = 1; | |
| var a = []; | |
| for ( var i = 0; i <= p; ++ i ) { | |
| a[ i ] = zeroArr.slice( 0 ); | |
| } | |
| a[ 0 ][ 0 ] = 1.0; | |
| for ( var k = 1; k <= n; ++ k ) { | |
| var d = 0.0; | |
| var rk = r - k; | |
| var pk = p - k; | |
| if ( r >= k ) { | |
| a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ]; | |
| d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ]; | |
| } | |
| var j1 = ( rk >= - 1 ) ? 1 : - rk; | |
| var j2 = ( r - 1 <= pk ) ? k - 1 : p - r; | |
| for ( var j = j1; j <= j2; ++ j ) { | |
| a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ]; | |
| d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ]; | |
| } | |
| if ( r <= pk ) { | |
| a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ]; | |
| d += a[ s2 ][ k ] * ndu[ r ][ pk ]; | |
| } | |
| ders[ k ][ r ] = d; | |
| var j = s1; | |
| s1 = s2; | |
| s2 = j; | |
| } | |
| } | |
| var r = p; | |
| for ( var k = 1; k <= n; ++ k ) { | |
| for ( var j = 0; j <= p; ++ j ) { | |
| ders[ k ][ j ] *= r; | |
| } | |
| r *= p - k; | |
| } | |
| return ders; | |
| }, | |
| /* | |
| Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2. | |
| p : degree | |
| U : knot vector | |
| P : control points | |
| u : Parametric points | |
| nd : number of derivatives | |
| returns array[d+1] with derivatives | |
| */ | |
| calcBSplineDerivatives: function( p, U, P, u, nd ) { | |
| var du = nd < p ? nd : p; | |
| var CK = []; | |
| var span = this.findSpan( p, u, U ); | |
| var nders = this.calcBasisFunctionDerivatives( span, u, p, du, U ); | |
| var Pw = []; | |
| for ( var i = 0; i < P.length; ++ i ) { | |
| var point = P[ i ].clone(); | |
| var w = point.w; | |
| point.x *= w; | |
| point.y *= w; | |
| point.z *= w; | |
| Pw[ i ] = point; | |
| } | |
| for ( var k = 0; k <= du; ++ k ) { | |
| var point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] ); | |
| for ( var j = 1; j <= p; ++ j ) { | |
| point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) ); | |
| } | |
| CK[ k ] = point; | |
| } | |
| for ( var k = du + 1; k <= nd + 1; ++ k ) { | |
| CK[ k ] = new THREE.Vector4( 0, 0, 0 ); | |
| } | |
| return CK; | |
| }, | |
| /* | |
| Calculate "K over I" | |
| returns k!/(i!(k-i)!) | |
| */ | |
| calcKoverI: function( k, i ) { | |
| var nom = 1; | |
| for ( var j = 2; j <= k; ++ j ) { | |
| nom *= j; | |
| } | |
| var denom = 1; | |
| for ( var j = 2; j <= i; ++ j ) { | |
| denom *= j; | |
| } | |
| for ( var j = 2; j <= k - i; ++ j ) { | |
| denom *= j; | |
| } | |
| return nom / denom; | |
| }, | |
| /* | |
| Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2. | |
| Pders : result of function calcBSplineDerivatives | |
| returns array with derivatives for rational curve. | |
| */ | |
| calcRationalCurveDerivatives: function ( Pders ) { | |
| var nd = Pders.length; | |
| var Aders = []; | |
| var wders = []; | |
| for ( var i = 0; i < nd; ++ i ) { | |
| var point = Pders[ i ]; | |
| Aders[ i ] = new THREE.Vector3( point.x, point.y, point.z ); | |
| wders[ i ] = point.w; | |
| } | |
| var CK = []; | |
| for ( var k = 0; k < nd; ++ k ) { | |
| var v = Aders[ k ].clone(); | |
| for ( var i = 1; i <= k; ++ i ) { | |
| v.sub( CK[ k - i ].clone().multiplyScalar( this.calcKoverI( k, i ) * wders[ i ] ) ); | |
| } | |
| CK[ k ] = v.divideScalar( wders[ 0 ] ); | |
| } | |
| return CK; | |
| }, | |
| /* | |
| Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2. | |
| p : degree | |
| U : knot vector | |
| P : control points in homogeneous space | |
| u : parametric points | |
| nd : number of derivatives | |
| returns array with derivatives. | |
| */ | |
| calcNURBSDerivatives: function( p, U, P, u, nd ) { | |
| var Pders = this.calcBSplineDerivatives( p, U, P, u, nd ); | |
| return this.calcRationalCurveDerivatives( Pders ); | |
| }, | |
| /* | |
| Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3. | |
| p1, p2 : degrees of B-Spline surface | |
| U1, U2 : knot vectors | |
| P : control points (x, y, z, w) | |
| u, v : parametric values | |
| returns point for given (u, v) | |
| */ | |
| calcSurfacePoint: function ( p, q, U, V, P, u, v, target ) { | |
| var uspan = this.findSpan( p, u, U ); | |
| var vspan = this.findSpan( q, v, V ); | |
| var Nu = this.calcBasisFunctions( uspan, u, p, U ); | |
| var Nv = this.calcBasisFunctions( vspan, v, q, V ); | |
| var temp = []; | |
| for ( var l = 0; l <= q; ++ l ) { | |
| temp[ l ] = new THREE.Vector4( 0, 0, 0, 0 ); | |
| for ( var k = 0; k <= p; ++ k ) { | |
| var point = P[ uspan - p + k ][ vspan - q + l ].clone(); | |
| var w = point.w; | |
| point.x *= w; | |
| point.y *= w; | |
| point.z *= w; | |
| temp[ l ].add( point.multiplyScalar( Nu[ k ] ) ); | |
| } | |
| } | |
| var Sw = new THREE.Vector4( 0, 0, 0, 0 ); | |
| for ( var l = 0; l <= q; ++ l ) { | |
| Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) ); | |
| } | |
| Sw.divideScalar( Sw.w ); | |
| target.set( Sw.x, Sw.y, Sw.z ); | |
| } | |
| }; | |