Spaces:
Running
Running
| /** | |
| * @author supereggbert / http://www.paulbrunt.co.uk/ | |
| * @author philogb / http://blog.thejit.org/ | |
| * @author mikael emtinger / http://gomo.se/ | |
| * @author egraether / http://egraether.com/ | |
| * @author WestLangley / http://github.com/WestLangley | |
| */ | |
| function Vector4( x, y, z, w ) { | |
| this.x = x || 0; | |
| this.y = y || 0; | |
| this.z = z || 0; | |
| this.w = ( w !== undefined ) ? w : 1; | |
| } | |
| Object.assign( Vector4.prototype, { | |
| isVector4: true, | |
| set: function ( x, y, z, w ) { | |
| this.x = x; | |
| this.y = y; | |
| this.z = z; | |
| this.w = w; | |
| return this; | |
| }, | |
| setScalar: function ( scalar ) { | |
| this.x = scalar; | |
| this.y = scalar; | |
| this.z = scalar; | |
| this.w = scalar; | |
| return this; | |
| }, | |
| setX: function ( x ) { | |
| this.x = x; | |
| return this; | |
| }, | |
| setY: function ( y ) { | |
| this.y = y; | |
| return this; | |
| }, | |
| setZ: function ( z ) { | |
| this.z = z; | |
| return this; | |
| }, | |
| setW: function ( w ) { | |
| this.w = w; | |
| return this; | |
| }, | |
| setComponent: function ( index, value ) { | |
| switch ( index ) { | |
| case 0: this.x = value; break; | |
| case 1: this.y = value; break; | |
| case 2: this.z = value; break; | |
| case 3: this.w = value; break; | |
| default: throw new Error( 'index is out of range: ' + index ); | |
| } | |
| return this; | |
| }, | |
| getComponent: function ( index ) { | |
| switch ( index ) { | |
| case 0: return this.x; | |
| case 1: return this.y; | |
| case 2: return this.z; | |
| case 3: return this.w; | |
| default: throw new Error( 'index is out of range: ' + index ); | |
| } | |
| }, | |
| clone: function () { | |
| return new this.constructor( this.x, this.y, this.z, this.w ); | |
| }, | |
| copy: function ( v ) { | |
| this.x = v.x; | |
| this.y = v.y; | |
| this.z = v.z; | |
| this.w = ( v.w !== undefined ) ? v.w : 1; | |
| return this; | |
| }, | |
| add: function ( v, w ) { | |
| if ( w !== undefined ) { | |
| console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); | |
| return this.addVectors( v, w ); | |
| } | |
| this.x += v.x; | |
| this.y += v.y; | |
| this.z += v.z; | |
| this.w += v.w; | |
| return this; | |
| }, | |
| addScalar: function ( s ) { | |
| this.x += s; | |
| this.y += s; | |
| this.z += s; | |
| this.w += s; | |
| return this; | |
| }, | |
| addVectors: function ( a, b ) { | |
| this.x = a.x + b.x; | |
| this.y = a.y + b.y; | |
| this.z = a.z + b.z; | |
| this.w = a.w + b.w; | |
| return this; | |
| }, | |
| addScaledVector: function ( v, s ) { | |
| this.x += v.x * s; | |
| this.y += v.y * s; | |
| this.z += v.z * s; | |
| this.w += v.w * s; | |
| return this; | |
| }, | |
| sub: function ( v, w ) { | |
| if ( w !== undefined ) { | |
| console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); | |
| return this.subVectors( v, w ); | |
| } | |
| this.x -= v.x; | |
| this.y -= v.y; | |
| this.z -= v.z; | |
| this.w -= v.w; | |
| return this; | |
| }, | |
| subScalar: function ( s ) { | |
| this.x -= s; | |
| this.y -= s; | |
| this.z -= s; | |
| this.w -= s; | |
| return this; | |
| }, | |
| subVectors: function ( a, b ) { | |
| this.x = a.x - b.x; | |
| this.y = a.y - b.y; | |
| this.z = a.z - b.z; | |
| this.w = a.w - b.w; | |
| return this; | |
| }, | |
| multiplyScalar: function ( scalar ) { | |
| this.x *= scalar; | |
| this.y *= scalar; | |
| this.z *= scalar; | |
| this.w *= scalar; | |
| return this; | |
| }, | |
| applyMatrix4: function ( m ) { | |
| var x = this.x, y = this.y, z = this.z, w = this.w; | |
| var e = m.elements; | |
| this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; | |
| this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; | |
| this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; | |
| this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; | |
| return this; | |
| }, | |
| divideScalar: function ( scalar ) { | |
| return this.multiplyScalar( 1 / scalar ); | |
| }, | |
| setAxisAngleFromQuaternion: function ( q ) { | |
| // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm | |
| // q is assumed to be normalized | |
| this.w = 2 * Math.acos( q.w ); | |
| var s = Math.sqrt( 1 - q.w * q.w ); | |
| if ( s < 0.0001 ) { | |
| this.x = 1; | |
| this.y = 0; | |
| this.z = 0; | |
| } else { | |
| this.x = q.x / s; | |
| this.y = q.y / s; | |
| this.z = q.z / s; | |
| } | |
| return this; | |
| }, | |
| setAxisAngleFromRotationMatrix: function ( m ) { | |
| // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm | |
| // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) | |
| var angle, x, y, z, // variables for result | |
| epsilon = 0.01, // margin to allow for rounding errors | |
| epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees | |
| te = m.elements, | |
| m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], | |
| m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], | |
| m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; | |
| if ( ( Math.abs( m12 - m21 ) < epsilon ) && | |
| ( Math.abs( m13 - m31 ) < epsilon ) && | |
| ( Math.abs( m23 - m32 ) < epsilon ) ) { | |
| // singularity found | |
| // first check for identity matrix which must have +1 for all terms | |
| // in leading diagonal and zero in other terms | |
| if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && | |
| ( Math.abs( m13 + m31 ) < epsilon2 ) && | |
| ( Math.abs( m23 + m32 ) < epsilon2 ) && | |
| ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { | |
| // this singularity is identity matrix so angle = 0 | |
| this.set( 1, 0, 0, 0 ); | |
| return this; // zero angle, arbitrary axis | |
| } | |
| // otherwise this singularity is angle = 180 | |
| angle = Math.PI; | |
| var xx = ( m11 + 1 ) / 2; | |
| var yy = ( m22 + 1 ) / 2; | |
| var zz = ( m33 + 1 ) / 2; | |
| var xy = ( m12 + m21 ) / 4; | |
| var xz = ( m13 + m31 ) / 4; | |
| var yz = ( m23 + m32 ) / 4; | |
| if ( ( xx > yy ) && ( xx > zz ) ) { | |
| // m11 is the largest diagonal term | |
| if ( xx < epsilon ) { | |
| x = 0; | |
| y = 0.707106781; | |
| z = 0.707106781; | |
| } else { | |
| x = Math.sqrt( xx ); | |
| y = xy / x; | |
| z = xz / x; | |
| } | |
| } else if ( yy > zz ) { | |
| // m22 is the largest diagonal term | |
| if ( yy < epsilon ) { | |
| x = 0.707106781; | |
| y = 0; | |
| z = 0.707106781; | |
| } else { | |
| y = Math.sqrt( yy ); | |
| x = xy / y; | |
| z = yz / y; | |
| } | |
| } else { | |
| // m33 is the largest diagonal term so base result on this | |
| if ( zz < epsilon ) { | |
| x = 0.707106781; | |
| y = 0.707106781; | |
| z = 0; | |
| } else { | |
| z = Math.sqrt( zz ); | |
| x = xz / z; | |
| y = yz / z; | |
| } | |
| } | |
| this.set( x, y, z, angle ); | |
| return this; // return 180 deg rotation | |
| } | |
| // as we have reached here there are no singularities so we can handle normally | |
| var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + | |
| ( m13 - m31 ) * ( m13 - m31 ) + | |
| ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize | |
| if ( Math.abs( s ) < 0.001 ) s = 1; | |
| // prevent divide by zero, should not happen if matrix is orthogonal and should be | |
| // caught by singularity test above, but I've left it in just in case | |
| this.x = ( m32 - m23 ) / s; | |
| this.y = ( m13 - m31 ) / s; | |
| this.z = ( m21 - m12 ) / s; | |
| this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); | |
| return this; | |
| }, | |
| min: function ( v ) { | |
| this.x = Math.min( this.x, v.x ); | |
| this.y = Math.min( this.y, v.y ); | |
| this.z = Math.min( this.z, v.z ); | |
| this.w = Math.min( this.w, v.w ); | |
| return this; | |
| }, | |
| max: function ( v ) { | |
| this.x = Math.max( this.x, v.x ); | |
| this.y = Math.max( this.y, v.y ); | |
| this.z = Math.max( this.z, v.z ); | |
| this.w = Math.max( this.w, v.w ); | |
| return this; | |
| }, | |
| clamp: function ( min, max ) { | |
| // assumes min < max, componentwise | |
| this.x = Math.max( min.x, Math.min( max.x, this.x ) ); | |
| this.y = Math.max( min.y, Math.min( max.y, this.y ) ); | |
| this.z = Math.max( min.z, Math.min( max.z, this.z ) ); | |
| this.w = Math.max( min.w, Math.min( max.w, this.w ) ); | |
| return this; | |
| }, | |
| clampScalar: function () { | |
| var min, max; | |
| return function clampScalar( minVal, maxVal ) { | |
| if ( min === undefined ) { | |
| min = new Vector4(); | |
| max = new Vector4(); | |
| } | |
| min.set( minVal, minVal, minVal, minVal ); | |
| max.set( maxVal, maxVal, maxVal, maxVal ); | |
| return this.clamp( min, max ); | |
| }; | |
| }(), | |
| clampLength: function ( min, max ) { | |
| var length = this.length(); | |
| return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); | |
| }, | |
| floor: function () { | |
| this.x = Math.floor( this.x ); | |
| this.y = Math.floor( this.y ); | |
| this.z = Math.floor( this.z ); | |
| this.w = Math.floor( this.w ); | |
| return this; | |
| }, | |
| ceil: function () { | |
| this.x = Math.ceil( this.x ); | |
| this.y = Math.ceil( this.y ); | |
| this.z = Math.ceil( this.z ); | |
| this.w = Math.ceil( this.w ); | |
| return this; | |
| }, | |
| round: function () { | |
| this.x = Math.round( this.x ); | |
| this.y = Math.round( this.y ); | |
| this.z = Math.round( this.z ); | |
| this.w = Math.round( this.w ); | |
| return this; | |
| }, | |
| roundToZero: function () { | |
| this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); | |
| this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); | |
| this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); | |
| this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); | |
| return this; | |
| }, | |
| negate: function () { | |
| this.x = - this.x; | |
| this.y = - this.y; | |
| this.z = - this.z; | |
| this.w = - this.w; | |
| return this; | |
| }, | |
| dot: function ( v ) { | |
| return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; | |
| }, | |
| lengthSq: function () { | |
| return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; | |
| }, | |
| length: function () { | |
| return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); | |
| }, | |
| manhattanLength: function () { | |
| return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); | |
| }, | |
| normalize: function () { | |
| return this.divideScalar( this.length() || 1 ); | |
| }, | |
| setLength: function ( length ) { | |
| return this.normalize().multiplyScalar( length ); | |
| }, | |
| lerp: function ( v, alpha ) { | |
| this.x += ( v.x - this.x ) * alpha; | |
| this.y += ( v.y - this.y ) * alpha; | |
| this.z += ( v.z - this.z ) * alpha; | |
| this.w += ( v.w - this.w ) * alpha; | |
| return this; | |
| }, | |
| lerpVectors: function ( v1, v2, alpha ) { | |
| return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); | |
| }, | |
| equals: function ( v ) { | |
| return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); | |
| }, | |
| fromArray: function ( array, offset ) { | |
| if ( offset === undefined ) offset = 0; | |
| this.x = array[ offset ]; | |
| this.y = array[ offset + 1 ]; | |
| this.z = array[ offset + 2 ]; | |
| this.w = array[ offset + 3 ]; | |
| return this; | |
| }, | |
| toArray: function ( array, offset ) { | |
| if ( array === undefined ) array = []; | |
| if ( offset === undefined ) offset = 0; | |
| array[ offset ] = this.x; | |
| array[ offset + 1 ] = this.y; | |
| array[ offset + 2 ] = this.z; | |
| array[ offset + 3 ] = this.w; | |
| return array; | |
| }, | |
| fromBufferAttribute: function ( attribute, index, offset ) { | |
| if ( offset !== undefined ) { | |
| console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' ); | |
| } | |
| this.x = attribute.getX( index ); | |
| this.y = attribute.getY( index ); | |
| this.z = attribute.getZ( index ); | |
| this.w = attribute.getW( index ); | |
| return this; | |
| } | |
| } ); | |
| export { Vector4 }; | |