Spaces:
Runtime error
Runtime error
| # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
| # Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver | |
| from typing import List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from .base import * | |
| class DPMSolverMultistepScheduler(Scheduler): | |
| def __init__( | |
| self, | |
| # Generic scheduler settings | |
| num_inference_timesteps: int, | |
| betas: torch.Tensor, | |
| num_train_timesteps: int = 1000, | |
| inference_timesteps: Union[str, List[str]] = "trailing", | |
| set_alpha_to_one: bool = True, | |
| device: Optional[torch.device] = None, | |
| dtype: torch.dtype = torch.float32, | |
| # DPM scheduler settings | |
| solver_order: int = 2, | |
| algorithm_type: str = "dpmsolver++", | |
| solver_type: str = "midpoint", | |
| lower_order_final: bool = True, | |
| use_karras_sigmas: bool = False, | |
| ): | |
| super().__init__( | |
| num_train_timesteps=num_train_timesteps, | |
| num_inference_timesteps=num_inference_timesteps, | |
| betas=betas, | |
| inference_timesteps=inference_timesteps, | |
| set_alpha_to_one=set_alpha_to_one, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| self.solver_order = solver_order | |
| self.solver_type = solver_type | |
| self.lower_order_final = lower_order_final | |
| self.algorithm_type = algorithm_type | |
| # Currently we only support VP-type noise schedule | |
| self.alpha_t = torch.sqrt(self.alphas_cumprod) | |
| self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) | |
| self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) | |
| sigmas = torch.sqrt((1 - self.alphas_cumprod) / self.alphas_cumprod) | |
| if use_karras_sigmas: | |
| log_sigmas = torch.log(sigmas) | |
| sigmas = self._convert_to_karras( | |
| in_sigmas=sigmas, num_inference_timesteps=num_inference_timesteps) | |
| timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) | |
| for sigma in sigmas]).round() | |
| timesteps = np.flip(timesteps).copy().astype(np.int64) | |
| self.timesteps = torch.from_numpy(timesteps).to(device) | |
| sigmas = torch.from_numpy(sigmas).to(device) | |
| self.sigmas = sigmas | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| # settings for DPM-Solver | |
| if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++", "deis"]: | |
| raise NotImplementedError( | |
| f"{algorithm_type} does is not implemented for {self.__class__}") | |
| if solver_type not in ["midpoint", "heun", "logrho", "bh1", "bh2"]: | |
| raise NotImplementedError( | |
| f"{solver_type} does is not implemented for {self.__class__}") | |
| # setable values | |
| self.reset() | |
| def reset(self): | |
| self.model_outputs = [None] * self.solver_order | |
| self.lower_order_nums = 0 | |
| def _sigma_to_t(self, sigma, log_sigmas): | |
| # get log sigma | |
| log_sigma = np.log(sigma) | |
| # get distribution | |
| dists = log_sigma - log_sigmas[:, np.newaxis] | |
| # get sigmas range | |
| low_idx = np.cumsum((dists >= 0), axis=0).argmax( | |
| axis=0).clip(max=log_sigmas.shape[0] - 2) | |
| high_idx = low_idx + 1 | |
| low = log_sigmas[low_idx] | |
| high = log_sigmas[high_idx] | |
| # interpolate sigmas | |
| w = (low - log_sigma) / (low - high) | |
| w = np.clip(w, 0, 1) | |
| # transform interpolation to time range | |
| t = (1 - w) * low_idx + w * high_idx | |
| t = t.reshape(sigma.shape) | |
| return t | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras | |
| def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_timesteps) -> torch.FloatTensor: | |
| """Constructs the noise schedule of Karras et al. (2022).""" | |
| sigma_min: float = in_sigmas[-1].item() | |
| sigma_max: float = in_sigmas[0].item() | |
| rho = 7.0 # 7.0 is the value used in the paper | |
| ramp = np.linspace(0, 1, num_inference_timesteps) | |
| min_inv_rho = sigma_min ** (1 / rho) | |
| max_inv_rho = sigma_max ** (1 / rho) | |
| sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
| return sigmas | |
| def dpm_solver_first_order_update( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| prev_timestep: int, | |
| sample: torch.FloatTensor, | |
| noise: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| """ | |
| One step for the first-order DPM-Solver (equivalent to DDIM). | |
| See https://arxiv.org/abs/2206.00927 for the detailed derivation. | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `torch.FloatTensor`: the sample tensor at the previous timestep. | |
| """ | |
| lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] | |
| alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] | |
| sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep] | |
| h = lambda_t - lambda_s | |
| if self.algorithm_type == "dpmsolver++": | |
| x_t = (sigma_t / sigma_s) * sample - \ | |
| (alpha_t * (torch.exp(-h) - 1.0)) * model_output | |
| elif self.algorithm_type == "dpmsolver": | |
| x_t = (alpha_t / alpha_s) * sample - \ | |
| (sigma_t * (torch.exp(h) - 1.0)) * model_output | |
| elif self.algorithm_type == "sde-dpmsolver++": | |
| assert noise is not None | |
| x_t = ( | |
| (sigma_t / sigma_s * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output | |
| + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
| ) | |
| elif self.algorithm_type == "sde-dpmsolver": | |
| assert noise is not None | |
| x_t = ( | |
| (alpha_t / alpha_s) * sample | |
| - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output | |
| + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise | |
| ) | |
| return x_t | |
| def multistep_dpm_solver_second_order_update( | |
| self, | |
| model_output_list: List[torch.FloatTensor], | |
| timestep_list: List[int], | |
| prev_timestep: int, | |
| sample: torch.FloatTensor, | |
| noise: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| """ | |
| One step for the second-order multistep DPM-Solver. | |
| Args: | |
| model_output_list (`List[torch.FloatTensor]`): | |
| direct outputs from learned diffusion model at current and latter timesteps. | |
| timestep (`int`): current and latter discrete timestep in the diffusion chain. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `torch.FloatTensor`: the sample tensor at the previous timestep. | |
| """ | |
| t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] | |
| m0, m1 = model_output_list[-1], model_output_list[-2] | |
| lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] | |
| alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
| sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
| h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
| r0 = h_0 / h | |
| D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
| if self.algorithm_type == "dpmsolver++": | |
| # See https://arxiv.org/abs/2211.01095 for detailed derivations | |
| if self.solver_type == "midpoint": | |
| x_t = ( | |
| (sigma_t / sigma_s0) * sample | |
| - (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
| - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 | |
| ) | |
| elif self.solver_type == "heun": | |
| x_t = ( | |
| (sigma_t / sigma_s0) * sample | |
| - (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
| + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
| ) | |
| elif self.algorithm_type == "dpmsolver": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| if self.solver_type == "midpoint": | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
| - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 | |
| ) | |
| elif self.solver_type == "heun": | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
| - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 | |
| ) | |
| elif self.algorithm_type == "sde-dpmsolver++": | |
| assert noise is not None | |
| if self.solver_type == "midpoint": | |
| x_t = ( | |
| (sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
| + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 | |
| + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
| ) | |
| elif self.solver_type == "heun": | |
| x_t = ( | |
| (sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
| + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 | |
| + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
| ) | |
| elif self.algorithm_type == "sde-dpmsolver": | |
| assert noise is not None | |
| if self.solver_type == "midpoint": | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
| - (sigma_t * (torch.exp(h) - 1.0)) * D1 | |
| + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise | |
| ) | |
| elif self.solver_type == "heun": | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
| - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 | |
| + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise | |
| ) | |
| return x_t | |
| def multistep_dpm_solver_third_order_update( | |
| self, | |
| model_output_list: List[torch.FloatTensor], | |
| timestep_list: List[int], | |
| prev_timestep: int, | |
| sample: torch.FloatTensor, | |
| ) -> torch.FloatTensor: | |
| """ | |
| One step for the third-order multistep DPM-Solver. | |
| Args: | |
| model_output_list (`List[torch.FloatTensor]`): | |
| direct outputs from learned diffusion model at current and latter timesteps. | |
| timestep (`int`): current and latter discrete timestep in the diffusion chain. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `torch.FloatTensor`: the sample tensor at the previous timestep. | |
| """ | |
| t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] | |
| m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | |
| lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( | |
| self.lambda_t[t], | |
| self.lambda_t[s0], | |
| self.lambda_t[s1], | |
| self.lambda_t[s2], | |
| ) | |
| alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
| sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
| h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 | |
| r0, r1 = h_0 / h, h_1 / h | |
| D0 = m0 | |
| D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) | |
| D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | |
| D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | |
| if self.algorithm_type == "dpmsolver++": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| x_t = ( | |
| (sigma_t / sigma_s0) * sample | |
| - (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
| + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
| - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 | |
| ) | |
| elif self.algorithm_type == "dpmsolver": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| x_t = ( | |
| (alpha_t / alpha_s0) * sample | |
| - (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
| - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 | |
| - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 | |
| ) | |
| return x_t | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| model_output_type: str, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| ) -> SchedulerStepOutput: | |
| """ | |
| Step function propagating the sample with the multistep DPM-Solver. | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
| Returns: | |
| [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is | |
| True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| if self.num_inference_timesteps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| step_index = (self.timesteps == timestep).nonzero() | |
| if len(step_index) == 0: | |
| step_index = len(self.timesteps) - 1 | |
| else: | |
| step_index = step_index.item() | |
| prev_timestep = 0 if step_index == len( | |
| self.timesteps) - 1 else self.timesteps[step_index + 1] | |
| lower_order_final = ( | |
| (step_index == len(self.timesteps) - | |
| 1) and self.lower_order_final and len(self.timesteps) < 15 | |
| ) | |
| lower_order_second = ( | |
| (step_index == len(self.timesteps) - | |
| 2) and self.lower_order_final and len(self.timesteps) < 15 | |
| ) | |
| model_output_convert = self.convert_output( | |
| model_output, model_output_type=model_output_type, sample=sample, timesteps=timestep) | |
| # DPM-Solver++ needs to solve an integral of the data prediction model. | |
| if self.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: | |
| model_output = model_output_convert.pred_original_sample | |
| # DPM-Solver needs to solve an integral of the noise prediction model. | |
| elif self.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: | |
| model_output = model_output_convert.pred_epsilon | |
| for i in range(self.solver_order - 1): | |
| self.model_outputs[i] = self.model_outputs[i + 1] | |
| self.model_outputs[-1] = model_output | |
| if self.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: | |
| noise = torch.randn_like( | |
| model_output, device=model_output.device, dtype=model_output.dtype) | |
| else: | |
| noise = None | |
| if self.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: | |
| prev_sample = self.dpm_solver_first_order_update( | |
| model_output, timestep, prev_timestep, sample, noise=noise | |
| ) | |
| elif self.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: | |
| timestep_list = [self.timesteps[step_index - 1], timestep] | |
| prev_sample = self.multistep_dpm_solver_second_order_update( | |
| self.model_outputs, timestep_list, prev_timestep, sample, noise=noise | |
| ) | |
| else: | |
| timestep_list = [self.timesteps[step_index - 2], | |
| self.timesteps[step_index - 1], timestep] | |
| prev_sample = self.multistep_dpm_solver_third_order_update( | |
| self.model_outputs, timestep_list, prev_timestep, sample | |
| ) | |
| if self.lower_order_nums < self.solver_order: | |
| self.lower_order_nums += 1 | |
| return SchedulerStepOutput(prev_sample=prev_sample, pred_original_sample=model_output_convert.pred_original_sample) | |