coloring
Browse files
app.py
CHANGED
|
@@ -3,6 +3,21 @@ import graphviz
|
|
| 3 |
import random
|
| 4 |
import gurobipy as gp
|
| 5 |
from gurobipy import GRB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def generate_random_graph(V, density):
|
|
@@ -15,42 +30,30 @@ def generate_random_graph(V, density):
|
|
| 15 |
def solve_matching(V, E):
|
| 16 |
m = gp.Model()
|
| 17 |
x = m.addVars(E, vtype=GRB.BINARY)
|
| 18 |
-
|
| 19 |
m.setObjective(x.sum(), GRB.MAXIMIZE)
|
| 20 |
m.addConstrs(x.sum(u, '*') + x.sum('*', u) <= 1 for u in range(V))
|
| 21 |
-
|
| 22 |
m.optimize()
|
| 23 |
-
|
| 24 |
-
matching = []
|
| 25 |
-
for e in E:
|
| 26 |
-
if x[e].x > 0.5:
|
| 27 |
-
matching.append(e)
|
| 28 |
-
|
| 29 |
-
return matching
|
| 30 |
|
| 31 |
|
| 32 |
def app_matching(V, E):
|
| 33 |
M = set(solve_matching(V, E))
|
| 34 |
-
|
| 35 |
if len(M) == V // 2:
|
| 36 |
st.success('Perfect matching found')
|
| 37 |
else:
|
| 38 |
st.metric('Matching size', len(M))
|
| 39 |
-
|
| 40 |
G = graphviz.Graph()
|
| 41 |
for u, v in E:
|
| 42 |
if (u, v) in M:
|
| 43 |
G.edge(str(u), str(v), color='red')
|
| 44 |
else:
|
| 45 |
G.edge(str(u), str(v), color='gray', style='dashed')
|
| 46 |
-
|
| 47 |
st.graphviz_chart(G)
|
| 48 |
|
| 49 |
|
| 50 |
def solve_hamilton(V, E):
|
| 51 |
m = gp.Model()
|
| 52 |
x = m.addVars(range(V), range(V), vtype=GRB.BINARY)
|
| 53 |
-
|
| 54 |
m.addConstrs(x.sum(u, '*') == 1 for u in range(V))
|
| 55 |
m.addConstrs(x.sum('*', i) == 1 for i in range(V))
|
| 56 |
for u in range(V):
|
|
@@ -59,12 +62,9 @@ def solve_hamilton(V, E):
|
|
| 59 |
for i in range(V - 1):
|
| 60 |
m.addConstr(x[u, i] + x[v, i + 1] <= 1)
|
| 61 |
m.addConstr(x[u, V - 1] + x[v, 0] <= 1)
|
| 62 |
-
|
| 63 |
m.optimize()
|
| 64 |
-
|
| 65 |
if m.status != GRB.OPTIMAL:
|
| 66 |
return None
|
| 67 |
-
|
| 68 |
cycle = []
|
| 69 |
for i in range(V):
|
| 70 |
for u in range(V):
|
|
@@ -76,12 +76,10 @@ def solve_hamilton(V, E):
|
|
| 76 |
|
| 77 |
def app_hamilton(V, E):
|
| 78 |
cycle = solve_hamilton(V, E)
|
| 79 |
-
|
| 80 |
if cycle is None:
|
| 81 |
st.error('Hamilton cycle not found')
|
| 82 |
else:
|
| 83 |
st.success('Hamilton cycle found')
|
| 84 |
-
|
| 85 |
G = graphviz.Graph()
|
| 86 |
if cycle is not None:
|
| 87 |
for u in range(V):
|
|
@@ -98,7 +96,6 @@ def app_hamilton(V, E):
|
|
| 98 |
G.node(str(u))
|
| 99 |
for u, v in E:
|
| 100 |
G.edge(str(u), str(v))
|
| 101 |
-
|
| 102 |
st.graphviz_chart(G)
|
| 103 |
|
| 104 |
|
|
@@ -125,6 +122,31 @@ def app_vertex_cover(V, E):
|
|
| 125 |
st.graphviz_chart(G)
|
| 126 |
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def main():
|
| 129 |
V = st.number_input('Number of vertices', min_value=1, value=10)
|
| 130 |
density = st.slider('Density', min_value=0.0, max_value=1.0, value=0.5)
|
|
@@ -140,12 +162,14 @@ def main():
|
|
| 140 |
app_matching,
|
| 141 |
app_hamilton,
|
| 142 |
app_vertex_cover,
|
|
|
|
| 143 |
]
|
| 144 |
|
| 145 |
tabs = st.tabs([
|
| 146 |
'Matching',
|
| 147 |
'Hamilton',
|
| 148 |
'Vertex cover',
|
|
|
|
| 149 |
])
|
| 150 |
|
| 151 |
for t, a in zip(tabs, apps):
|
|
|
|
| 3 |
import random
|
| 4 |
import gurobipy as gp
|
| 5 |
from gurobipy import GRB
|
| 6 |
+
import colorsys
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def hsv2rgb(h, s, v):
|
| 10 |
+
r, g, b = colorsys.hsv_to_rgb(h, s, v)
|
| 11 |
+
return int(255 * r), int(255 * g), int(255 * b)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def format_color(color):
|
| 15 |
+
return '#%02x%02x%02x' % color
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def generate_colors(n):
|
| 19 |
+
colors = [hsv2rgb(i / n, 0.5, 1.0) for i in range(n)]
|
| 20 |
+
return [format_color(color) for color in colors]
|
| 21 |
|
| 22 |
|
| 23 |
def generate_random_graph(V, density):
|
|
|
|
| 30 |
def solve_matching(V, E):
|
| 31 |
m = gp.Model()
|
| 32 |
x = m.addVars(E, vtype=GRB.BINARY)
|
|
|
|
| 33 |
m.setObjective(x.sum(), GRB.MAXIMIZE)
|
| 34 |
m.addConstrs(x.sum(u, '*') + x.sum('*', u) <= 1 for u in range(V))
|
|
|
|
| 35 |
m.optimize()
|
| 36 |
+
return [e for e in E if x[e].x > 0.5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
def app_matching(V, E):
|
| 40 |
M = set(solve_matching(V, E))
|
|
|
|
| 41 |
if len(M) == V // 2:
|
| 42 |
st.success('Perfect matching found')
|
| 43 |
else:
|
| 44 |
st.metric('Matching size', len(M))
|
|
|
|
| 45 |
G = graphviz.Graph()
|
| 46 |
for u, v in E:
|
| 47 |
if (u, v) in M:
|
| 48 |
G.edge(str(u), str(v), color='red')
|
| 49 |
else:
|
| 50 |
G.edge(str(u), str(v), color='gray', style='dashed')
|
|
|
|
| 51 |
st.graphviz_chart(G)
|
| 52 |
|
| 53 |
|
| 54 |
def solve_hamilton(V, E):
|
| 55 |
m = gp.Model()
|
| 56 |
x = m.addVars(range(V), range(V), vtype=GRB.BINARY)
|
|
|
|
| 57 |
m.addConstrs(x.sum(u, '*') == 1 for u in range(V))
|
| 58 |
m.addConstrs(x.sum('*', i) == 1 for i in range(V))
|
| 59 |
for u in range(V):
|
|
|
|
| 62 |
for i in range(V - 1):
|
| 63 |
m.addConstr(x[u, i] + x[v, i + 1] <= 1)
|
| 64 |
m.addConstr(x[u, V - 1] + x[v, 0] <= 1)
|
|
|
|
| 65 |
m.optimize()
|
|
|
|
| 66 |
if m.status != GRB.OPTIMAL:
|
| 67 |
return None
|
|
|
|
| 68 |
cycle = []
|
| 69 |
for i in range(V):
|
| 70 |
for u in range(V):
|
|
|
|
| 76 |
|
| 77 |
def app_hamilton(V, E):
|
| 78 |
cycle = solve_hamilton(V, E)
|
|
|
|
| 79 |
if cycle is None:
|
| 80 |
st.error('Hamilton cycle not found')
|
| 81 |
else:
|
| 82 |
st.success('Hamilton cycle found')
|
|
|
|
| 83 |
G = graphviz.Graph()
|
| 84 |
if cycle is not None:
|
| 85 |
for u in range(V):
|
|
|
|
| 96 |
G.node(str(u))
|
| 97 |
for u, v in E:
|
| 98 |
G.edge(str(u), str(v))
|
|
|
|
| 99 |
st.graphviz_chart(G)
|
| 100 |
|
| 101 |
|
|
|
|
| 122 |
st.graphviz_chart(G)
|
| 123 |
|
| 124 |
|
| 125 |
+
def solve_coloring(V, E):
|
| 126 |
+
m = gp.Model()
|
| 127 |
+
vertex_color = m.addVars(range(V), vtype=GRB.INTEGER, lb=0)
|
| 128 |
+
or_helper = m.addVars(E, vtype=GRB.BINARY)
|
| 129 |
+
chi = m.addVar(vtype=GRB.INTEGER)
|
| 130 |
+
m.setObjective(chi, GRB.MINIMIZE)
|
| 131 |
+
m.addConstrs(vertex_color[u] <= chi for u in range(V))
|
| 132 |
+
m.addConstrs((or_helper[u, v] == 0) >> (vertex_color[u] - vertex_color[v] >= 1) for u, v in E)
|
| 133 |
+
m.addConstrs((or_helper[u, v] == 1) >> (vertex_color[v] - vertex_color[u] >= 1) for u, v in E)
|
| 134 |
+
m.optimize()
|
| 135 |
+
return [round(vertex_color[u].x) for u in range(V)]
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def app_coloring(V, E):
|
| 139 |
+
coloring = solve_coloring(V, E)
|
| 140 |
+
st.metric('Chromatic number', max(coloring) + 1)
|
| 141 |
+
colors = generate_colors(max(coloring) + 1)
|
| 142 |
+
G = graphviz.Graph()
|
| 143 |
+
for u in range(V):
|
| 144 |
+
G.node(str(u), style='filled', fillcolor=colors[coloring[u]])
|
| 145 |
+
for u, v in E:
|
| 146 |
+
G.edge(str(u), str(v))
|
| 147 |
+
st.graphviz_chart(G)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
def main():
|
| 151 |
V = st.number_input('Number of vertices', min_value=1, value=10)
|
| 152 |
density = st.slider('Density', min_value=0.0, max_value=1.0, value=0.5)
|
|
|
|
| 162 |
app_matching,
|
| 163 |
app_hamilton,
|
| 164 |
app_vertex_cover,
|
| 165 |
+
app_coloring,
|
| 166 |
]
|
| 167 |
|
| 168 |
tabs = st.tabs([
|
| 169 |
'Matching',
|
| 170 |
'Hamilton',
|
| 171 |
'Vertex cover',
|
| 172 |
+
'Coloring',
|
| 173 |
])
|
| 174 |
|
| 175 |
for t, a in zip(tabs, apps):
|