File size: 9,505 Bytes
4724018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import torch
import torch.nn.functional as F

def get_rigid_transform(A, B):
    """
    Estimate the rigid body transformation between two sets of 3D points.
    A and B are Nx3 matrices where each row is a 3D point.
    Returns a rotation matrix R and translation vector t.
    Args:
        A, B: [batch, N, 3] matrix of 3D points
    Outputs:
        R, t: [batch, 3, 3/1]
        target = R @ source (source shape [3, 1]) + t
    """
    assert A.shape == B.shape, "Input matrices must have the same shape"
    assert A.shape[-1] == 3, "Input matrices must have 3 columns (x, y, z coordinates)"

    # Compute centroids. [..., 1, 3]
    centroid_A = torch.mean(A, dim=-2, keepdim=True)
    centroid_B = torch.mean(B, dim=-2, keepdim=True)

    # Center the point sets
    A_centered = A - centroid_A
    B_centered = B - centroid_B

    # Compute the cross-covariance matrix. [..., 3, 3]
    H = A_centered.transpose(-2, -1) @ B_centered

    # Compute the Singular Value Decomposition. Along last two dimensions
    U, S, Vt = torch.linalg.svd(H)

    # Compute the rotation matrix
    R = Vt.transpose(-2, -1) @ U.transpose(-2, -1)

    # Ensure a right-handed coordinate system
    flip_mask = (torch.det(R) < 0) * -2.0 + 1.0
    # Vt[:, 2, :] *= flip_mask[..., None]

    # [N] => [N, 3]
    pad_flip_mask = torch.stack(
        [torch.ones_like(flip_mask), torch.ones_like(flip_mask), flip_mask], dim=-1
    )
    Vt = Vt * pad_flip_mask[..., None]

    # Compute the rotation matrix
    R = Vt.transpose(-2, -1) @ U.transpose(-2, -1)

    # print(R.shape, centroid_A.shape, centroid_B.shape, flip_mask.shape)
    # Compute the translation
    t = centroid_B - (R @ centroid_A.transpose(-2, -1)).transpose(-2, -1)
    t = t.transpose(-2, -1)
    return R, t


def _test_rigid_transform():
    # Example usage:
    A = torch.tensor([[1, 2, 3], [4, 5, 6], [9, 8, 10], [10, -5, 1]]) * 1.0

    R_synthesized = torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) * 1.0
    # init a random rotation matrix:

    B = (R_synthesized @ A.T).T + 2.0  # Just an example offset

    R, t = get_rigid_transform(A[None, ...], B[None, ...])
    print("Rotation matrix R:")
    print(R)
    print("\nTranslation vector t:")
    print(t)


def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret


def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """
    from pytorch3d. Based on trace_method like: https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L205
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)

    return quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
    ].reshape(batch_dim + (4,))


def quternion_to_matrix(r):
    norm = torch.sqrt(
        r[:, 0] * r[:, 0] + r[:, 1] * r[:, 1] + r[:, 2] * r[:, 2] + r[:, 3] * r[:, 3]
    )

    q = r / norm[:, None]

    R = torch.zeros((q.size(0), 3, 3), device="cuda")

    r = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (y * y + z * z)
    R[:, 0, 1] = 2 * (x * y - r * z)
    R[:, 0, 2] = 2 * (x * z + r * y)
    R[:, 1, 0] = 2 * (x * y + r * z)
    R[:, 1, 1] = 1 - 2 * (x * x + z * z)
    R[:, 1, 2] = 2 * (y * z - r * x)
    R[:, 2, 0] = 2 * (x * z - r * y)
    R[:, 2, 1] = 2 * (y * z + r * x)
    R[:, 2, 2] = 1 - 2 * (x * x + y * y)
    return R


def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """
    from Pytorch3d
    Convert a unit quaternion to a standard form: one in which the real
    part is non negative.

    Args:
        quaternions: Quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Standardized quaternions as tensor of shape (..., 4).
    """
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)


def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """
    From pytorch3d
    Multiply two quaternions.
    Usual torch rules for broadcasting apply.

    Args:
        a: Quaternions as tensor of shape (..., 4), real part first.
        b: Quaternions as tensor of shape (..., 4), real part first.

    Returns:
        The product of a and b, a tensor of quaternions shape (..., 4).
    """
    aw, ax, ay, az = torch.unbind(a, -1)
    bw, bx, by, bz = torch.unbind(b, -1)
    ow = aw * bw - ax * bx - ay * by - az * bz
    ox = aw * bx + ax * bw + ay * bz - az * by
    oy = aw * by - ax * bz + ay * bw + az * bx
    oz = aw * bz + ax * by - ay * bx + az * bw
    ret = torch.stack((ow, ox, oy, oz), -1)
    ret = standardize_quaternion(ret)
    return ret


def _test_matrix_to_quaternion():
    # init a random batch of quaternion
    r = torch.randn((10, 4)).cuda()

    norm = torch.sqrt(
        r[:, 0] * r[:, 0] + r[:, 1] * r[:, 1] + r[:, 2] * r[:, 2] + r[:, 3] * r[:, 3]
    )

    q = r / norm[:, None]

    q = standardize_quaternion(q)

    R = quternion_to_matrix(q)

    I_rec = R @ R.transpose(-2, -1)
    I_rec_error = torch.abs(I_rec - torch.eye(3, device="cuda")[None, ...]).max()

    q_recovered = matrix_to_quaternion(R)
    norm_ = torch.linalg.norm(q_recovered, dim=-1)
    q_recovered = q_recovered / norm_[..., None]
    q_recovered = standardize_quaternion(q_recovered)

    print(q_recovered.shape, q.shape, R.shape)

    rec = (q - q_recovered).abs().max()

    print("rotation to I error:", I_rec_error, "quant rec error: ", rec)


def _test_matrix_to_quaternion_2():
    R = (
        torch.tensor(
            [[[1, 0, 0], [0, -1, 0], [0, 0, -1]], [[1, 0, 0], [0, 0, 1], [0, -1, 0]]]
        )
        * 1.0
    )

    q_rec = matrix_to_quaternion(R.transpose(-2, -1))

    R_rec = quternion_to_matrix(q_rec)

    print(R_rec)

def interpolate_points_w_R(
    query_points, query_rotation, drive_origin_pts, drive_displacement, top_k_index
):
    """
    Args:
        query_points: [n, 3]
        drive_origin_pts: [m, 3]
        drive_displacement: [m, 3]
        top_k_index: [n, top_k] < m

    Or directly call: apply_discrete_offset_filds_with_R(self, origin_points, offsets, topk=6):
        Args:
            origin_points: (N_r, 3)
            offsets: (N_r, 3)
        in rendering
    """

    # [n, topk, 3]
    top_k_disp = drive_displacement[top_k_index]
    source_points = drive_origin_pts[top_k_index]

    R, t = get_rigid_transform(source_points, source_points + top_k_disp)

    avg_offsets = top_k_disp.mean(dim=1)

    ret_points = query_points + avg_offsets

    new_rotation = quaternion_multiply(matrix_to_quaternion(R), query_rotation)

    return ret_points, new_rotation

def interpolate_points(
    query_points, query_rotation, drive_origin_pts, drive_current_points, top_k_index
):
    source_points = drive_origin_pts[top_k_index] # [n, topk, 3]
    target_points = drive_current_points[top_k_index] # [n, topk, 3]
    disp = target_points - source_points
    avg_offsets = disp.mean(dim=1) # [n, 3]
    ret_points = query_points + avg_offsets # [n, 3]
    # ret_points = target_points.mean(dim=1) # [n, 3]
    R, t = get_rigid_transform(source_points, target_points)
    new_rotation = quaternion_multiply(matrix_to_quaternion(R), query_rotation)
    return ret_points, new_rotation