Update app.py
Browse files
app.py
CHANGED
|
@@ -7,415 +7,406 @@ import io
|
|
| 7 |
import base64
|
| 8 |
from PIL import Image
|
| 9 |
import warnings
|
| 10 |
-
warnings.filterwarnings(
|
| 11 |
|
| 12 |
class MathVisualizer:
|
| 13 |
-
def
|
| 14 |
-
self.x = sp.Symbol(
|
| 15 |
-
self.y = sp.Symbol(
|
| 16 |
-
self.t = sp.Symbol(
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
raise ValueError(f"Invalid expression: {str(e)}")
|
| 29 |
|
| 30 |
-
def plot_2d_function(self, equation, x_range, y_range, color, style, grid, title):
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
-
def plot_parametric(self, x_equation, y_equation, t_range, color, style, grid, title):
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
-
def plot_polar(self, equation, theta_range, color, style, grid, title):
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
def plot_implicit(self, equation, x_range, y_range, color, grid, title):
|
| 116 |
-
"""Plot implicit equations F(x,y) = 0"""
|
| 117 |
try:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
X, Y = np.meshgrid(x_vals, y_vals)
|
| 124 |
-
|
| 125 |
-
# Convert to numpy function
|
| 126 |
-
func = sp.lambdify([self.x, self.y], expr, 'numpy')
|
| 127 |
-
Z = func(X, Y)
|
| 128 |
-
Z = np.real(Z)
|
| 129 |
-
|
| 130 |
-
plt.figure(figsize=(10, 8))
|
| 131 |
-
plt.contour(X, Y, Z, levels=[0], colors=[color], linewidths=2)
|
| 132 |
-
plt.xlim(x_range)
|
| 133 |
-
plt.ylim(y_range)
|
| 134 |
-
plt.xlabel('x', fontsize=12)
|
| 135 |
-
plt.ylabel('y', fontsize=12)
|
| 136 |
-
plt.title(title or f'{equation} = 0', fontsize=14)
|
| 137 |
-
plt.grid(grid, alpha=0.3)
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
return plt.gcf()
|
| 147 |
-
|
| 148 |
-
def plot_3d_surface(self, equation, x_range, y_range, color_scheme, title):
|
| 149 |
-
"""Plot 3D surface z = f(x,y)"""
|
| 150 |
-
try:
|
| 151 |
-
func = self.safe_eval(equation, [self.x, self.y])
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
ax.set_zlabel('z', fontsize=12)
|
| 165 |
-
ax.set_title(title or f'z = {equation}', fontsize=14)
|
| 166 |
-
fig.colorbar(surf, shrink=0.5, aspect=5)
|
| 167 |
|
| 168 |
return fig
|
| 169 |
|
| 170 |
except Exception as e:
|
| 171 |
-
|
| 172 |
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 173 |
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 174 |
-
plt.title('Error
|
| 175 |
-
return
|
| 176 |
-
```
|
| 177 |
-
|
| 178 |
-
# Initialize visualizer
|
| 179 |
-
|
| 180 |
-
visualizer = MathVisualizer()
|
| 181 |
-
|
| 182 |
-
def generate_plot(plot_type, equation, x_equation, y_equation,
|
| 183 |
-
x_min, x_max, y_min, y_max, t_min, t_max, theta_min, theta_max,
|
| 184 |
-
color, line_style, color_scheme, show_grid, custom_title):
|
| 185 |
-
|
| 186 |
-
```
|
| 187 |
-
plt.close('all') # Close any existing plots
|
| 188 |
-
|
| 189 |
-
try:
|
| 190 |
-
if plot_type == "2D Function (y = f(x))":
|
| 191 |
-
fig = visualizer.plot_2d_function(
|
| 192 |
-
equation, (x_min, x_max), (y_min, y_max),
|
| 193 |
-
color, line_style, show_grid, custom_title
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
elif plot_type == "Parametric (x = f(t), y = g(t))":
|
| 197 |
-
fig = visualizer.plot_parametric(
|
| 198 |
-
x_equation, y_equation, (t_min, t_max),
|
| 199 |
-
color, line_style, show_grid, custom_title
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
elif plot_type == "Polar (r = f(θ))":
|
| 203 |
-
fig = visualizer.plot_polar(
|
| 204 |
-
equation, (theta_min, theta_max),
|
| 205 |
-
color, line_style, show_grid, custom_title
|
| 206 |
-
)
|
| 207 |
-
|
| 208 |
-
elif plot_type == "Implicit (F(x,y) = 0)":
|
| 209 |
-
fig = visualizer.plot_implicit(
|
| 210 |
-
equation, (x_min, x_max), (y_min, y_max),
|
| 211 |
-
color, show_grid, custom_title
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
elif plot_type == "3D Surface (z = f(x,y))":
|
| 215 |
-
fig = visualizer.plot_3d_surface(
|
| 216 |
-
equation, (x_min, x_max), (y_min, y_max),
|
| 217 |
-
color_scheme, custom_title
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
return fig
|
| 221 |
-
|
| 222 |
-
except Exception as e:
|
| 223 |
-
plt.figure(figsize=(10, 8))
|
| 224 |
-
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 225 |
-
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 226 |
-
plt.title('Error generating plot')
|
| 227 |
-
return plt.gcf()
|
| 228 |
-
```
|
| 229 |
|
| 230 |
# Example equations for different types
|
| 231 |
-
|
| 232 |
examples = {
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
],
|
| 240 |
-
|
| 241 |
-
(
|
| 242 |
-
(
|
| 243 |
-
(
|
| 244 |
-
],
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
],
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
],
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
]
|
| 260 |
}
|
| 261 |
|
| 262 |
def load_example(plot_type, example_idx):
|
| 263 |
-
if plot_type in examples:
|
| 264 |
-
example_list = examples[plot_type]
|
| 265 |
-
if 0 <= example_idx < len(example_list):
|
| 266 |
-
example = example_list[example_idx]
|
| 267 |
-
if plot_type ==
|
| 268 |
-
return example[0], example[1],
|
| 269 |
-
else:
|
| 270 |
-
return example,
|
| 271 |
-
return
|
| 272 |
|
| 273 |
# Create Gradio interface
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
gr.Markdown(”””
|
| 277 |
# 📊 Mathematical Equation Visualizer
|
| 278 |
|
| 279 |
-
```
|
| 280 |
Generate beautiful visualizations of mathematical equations with various plot types and customization options.
|
| 281 |
|
| 282 |
**Supported functions:** sin, cos, tan, exp, log, sqrt, abs, and basic arithmetic (+, -, *, /, **)
|
| 283 |
""")
|
| 284 |
-
|
| 285 |
-
with gr.Row():
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
with gr.Group():
|
| 300 |
-
equation = gr.Textbox(
|
| 301 |
-
value="sin(x)",
|
| 302 |
-
label="Equation",
|
| 303 |
-
placeholder="e.g., sin(x), x**2 + 1, etc."
|
| 304 |
)
|
| 305 |
|
| 306 |
-
with gr.
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
|
|
|
| 310 |
)
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
)
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
with gr.Group():
|
| 332 |
-
gr.Markdown("### Style Settings")
|
| 333 |
-
color = gr.ColorPicker(value="#1f77b4", label="Line Color")
|
| 334 |
-
line_style = gr.Dropdown(
|
| 335 |
-
choices=["-", "--", "-.", ":"],
|
| 336 |
-
value="-",
|
| 337 |
-
label="Line Style"
|
| 338 |
-
)
|
| 339 |
-
color_scheme = gr.Dropdown(
|
| 340 |
-
choices=["viridis", "plasma", "inferno", "magma", "coolwarm", "RdYlBu"],
|
| 341 |
-
value="viridis",
|
| 342 |
-
label="3D Color Scheme"
|
| 343 |
)
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
choices=["Select an example..."],
|
| 353 |
-
label="Load Example"
|
| 354 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
# Update example dropdown
|
| 364 |
-
if plot_type in examples:
|
| 365 |
-
example_choices = ["Select an example..."] + [
|
| 366 |
-
f"Example {i+1}" for i in range(len(examples[plot_type]))
|
| 367 |
-
]
|
| 368 |
-
else:
|
| 369 |
-
example_choices = ["Select an example..."]
|
| 370 |
-
|
| 371 |
-
return (
|
| 372 |
-
gr.update(visible=parametric_visible),
|
| 373 |
-
gr.update(choices=example_choices, value="Select an example...")
|
| 374 |
)
|
| 375 |
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
example_idx = int(example_choice.split()[-1]) - 1
|
| 382 |
-
return load_example(plot_type, example_idx)
|
| 383 |
-
except:
|
| 384 |
-
return "", "", "", ""
|
| 385 |
-
|
| 386 |
-
plot_type.change(
|
| 387 |
-
update_inputs,
|
| 388 |
-
inputs=[plot_type],
|
| 389 |
-
outputs=[parametric_inputs, example_dropdown]
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
example_dropdown.change(
|
| 393 |
-
load_example_equations,
|
| 394 |
-
inputs=[plot_type, example_dropdown],
|
| 395 |
-
outputs=[equation, x_equation, y_equation, custom_title]
|
| 396 |
-
)
|
| 397 |
|
| 398 |
-
generate_btn.click(
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
)
|
| 407 |
|
| 408 |
-
# Auto-generate on equation change
|
| 409 |
-
equation.change(
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
)
|
| 418 |
-
```
|
| 419 |
|
| 420 |
-
if
|
| 421 |
-
demo.launch(share=True)
|
|
|
|
| 7 |
import base64
|
| 8 |
from PIL import Image
|
| 9 |
import warnings
|
| 10 |
+
warnings.filterwarnings('ignore')
|
| 11 |
|
| 12 |
class MathVisualizer:
|
| 13 |
+
def __init__(self):
|
| 14 |
+
self.x = sp.Symbol('x')
|
| 15 |
+
self.y = sp.Symbol('y')
|
| 16 |
+
self.t = sp.Symbol('t')
|
| 17 |
|
| 18 |
+
def safe_eval(self, expression, variables):
|
| 19 |
+
"""Safely evaluate mathematical expressions"""
|
| 20 |
+
try:
|
| 21 |
+
# Convert string to sympy expression
|
| 22 |
+
expr = sp.sympify(expression)
|
| 23 |
+
# Convert to numpy function for evaluation
|
| 24 |
+
func = sp.lambdify(variables, expr, 'numpy')
|
| 25 |
+
return func
|
| 26 |
+
except Exception as e:
|
| 27 |
+
raise ValueError(f"Invalid expression: {str(e)}")
|
|
|
|
| 28 |
|
| 29 |
+
def plot_2d_function(self, equation, x_range, y_range, color, style, grid, title):
|
| 30 |
+
"""Plot 2D function y = f(x)"""
|
| 31 |
+
try:
|
| 32 |
+
func = self.safe_eval(equation, self.x)
|
| 33 |
+
x_vals = np.linspace(x_range[0], x_range[1], 1000)
|
| 34 |
+
y_vals = func(x_vals)
|
| 35 |
+
|
| 36 |
+
# Handle complex numbers and infinities
|
| 37 |
+
y_vals = np.real(y_vals)
|
| 38 |
+
y_vals = np.where(np.abs(y_vals) > 1e10, np.nan, y_vals)
|
| 39 |
+
|
| 40 |
+
plt.figure(figsize=(10, 8))
|
| 41 |
+
plt.plot(x_vals, y_vals, color=color, linewidth=2, linestyle=style)
|
| 42 |
+
plt.xlim(x_range)
|
| 43 |
+
plt.ylim(y_range)
|
| 44 |
+
plt.xlabel('x', fontsize=12)
|
| 45 |
+
plt.ylabel('y', fontsize=12)
|
| 46 |
+
plt.title(title or f'y = {equation}', fontsize=14)
|
| 47 |
+
plt.grid(grid, alpha=0.3)
|
| 48 |
+
|
| 49 |
+
return plt.gcf()
|
| 50 |
+
|
| 51 |
+
except Exception as e:
|
| 52 |
+
plt.figure(figsize=(10, 8))
|
| 53 |
+
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 54 |
+
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 55 |
+
plt.title('Error in equation')
|
| 56 |
+
return plt.gcf()
|
| 57 |
|
| 58 |
+
def plot_parametric(self, x_equation, y_equation, t_range, color, style, grid, title):
|
| 59 |
+
"""Plot parametric equations x = f(t), y = g(t)"""
|
| 60 |
+
try:
|
| 61 |
+
x_func = self.safe_eval(x_equation, self.t)
|
| 62 |
+
y_func = self.safe_eval(y_equation, self.t)
|
| 63 |
+
|
| 64 |
+
t_vals = np.linspace(t_range[0], t_range[1], 1000)
|
| 65 |
+
x_vals = x_func(t_vals)
|
| 66 |
+
y_vals = y_func(t_vals)
|
| 67 |
+
|
| 68 |
+
# Handle complex numbers
|
| 69 |
+
x_vals = np.real(x_vals)
|
| 70 |
+
y_vals = np.real(y_vals)
|
| 71 |
+
|
| 72 |
+
plt.figure(figsize=(10, 8))
|
| 73 |
+
plt.plot(x_vals, y_vals, color=color, linewidth=2, linestyle=style)
|
| 74 |
+
plt.xlabel('x', fontsize=12)
|
| 75 |
+
plt.ylabel('y', fontsize=12)
|
| 76 |
+
plt.title(title or f'x = {x_equation}, y = {y_equation}', fontsize=14)
|
| 77 |
+
plt.grid(grid, alpha=0.3)
|
| 78 |
+
plt.axis('equal')
|
| 79 |
+
|
| 80 |
+
return plt.gcf()
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
plt.figure(figsize=(10, 8))
|
| 84 |
+
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 85 |
+
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 86 |
+
plt.title('Error in parametric equations')
|
| 87 |
+
return plt.gcf()
|
| 88 |
|
| 89 |
+
def plot_polar(self, equation, theta_range, color, style, grid, title):
|
| 90 |
+
"""Plot polar equations r = f(θ)"""
|
| 91 |
+
try:
|
| 92 |
+
theta = sp.Symbol('theta')
|
| 93 |
+
func = self.safe_eval(equation.replace('θ', 'theta').replace('theta', 'theta'), theta)
|
| 94 |
+
|
| 95 |
+
theta_vals = np.linspace(theta_range[0], theta_range[1], 1000)
|
| 96 |
+
r_vals = func(theta_vals)
|
| 97 |
+
r_vals = np.real(r_vals)
|
| 98 |
+
|
| 99 |
+
plt.figure(figsize=(10, 8))
|
| 100 |
+
ax = plt.subplot(111, projection='polar')
|
| 101 |
+
ax.plot(theta_vals, r_vals, color=color, linewidth=2, linestyle=style)
|
| 102 |
+
ax.set_title(title or f'r = {equation}', fontsize=14, pad=20)
|
| 103 |
+
ax.grid(grid, alpha=0.3)
|
| 104 |
+
|
| 105 |
+
return plt.gcf()
|
| 106 |
+
|
| 107 |
+
except Exception as e:
|
| 108 |
+
plt.figure(figsize=(10, 8))
|
| 109 |
+
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 110 |
+
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 111 |
+
plt.title('Error in polar equation')
|
| 112 |
+
return plt.gcf()
|
| 113 |
+
|
| 114 |
+
def plot_implicit(self, equation, x_range, y_range, color, grid, title):
|
| 115 |
+
"""Plot implicit equations F(x,y) = 0"""
|
| 116 |
+
try:
|
| 117 |
+
# Parse equation (assume it equals 0)
|
| 118 |
+
expr = sp.sympify(equation)
|
| 119 |
+
|
| 120 |
+
x_vals = np.linspace(x_range[0], x_range[1], 400)
|
| 121 |
+
y_vals = np.linspace(y_range[0], y_range[1], 400)
|
| 122 |
+
X, Y = np.meshgrid(x_vals, y_vals)
|
| 123 |
+
|
| 124 |
+
# Convert to numpy function
|
| 125 |
+
func = sp.lambdify([self.x, self.y], expr, 'numpy')
|
| 126 |
+
Z = func(X, Y)
|
| 127 |
+
Z = np.real(Z)
|
| 128 |
+
|
| 129 |
+
plt.figure(figsize=(10, 8))
|
| 130 |
+
plt.contour(X, Y, Z, levels=[0], colors=[color], linewidths=2)
|
| 131 |
+
plt.xlim(x_range)
|
| 132 |
+
plt.ylim(y_range)
|
| 133 |
+
plt.xlabel('x', fontsize=12)
|
| 134 |
+
plt.ylabel('y', fontsize=12)
|
| 135 |
+
plt.title(title or f'{equation} = 0', fontsize=14)
|
| 136 |
+
plt.grid(grid, alpha=0.3)
|
| 137 |
+
|
| 138 |
+
return plt.gcf()
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
plt.figure(figsize=(10, 8))
|
| 142 |
+
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 143 |
+
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 144 |
+
plt.title('Error in implicit equation')
|
| 145 |
+
return plt.gcf()
|
| 146 |
+
|
| 147 |
+
def plot_3d_surface(self, equation, x_range, y_range, color_scheme, title):
|
| 148 |
+
"""Plot 3D surface z = f(x,y)"""
|
| 149 |
+
try:
|
| 150 |
+
func = self.safe_eval(equation, [self.x, self.y])
|
| 151 |
+
|
| 152 |
+
x_vals = np.linspace(x_range[0], x_range[1], 50)
|
| 153 |
+
y_vals = np.linspace(y_range[0], y_range[1], 50)
|
| 154 |
+
X, Y = np.meshgrid(x_vals, y_vals)
|
| 155 |
+
Z = func(X, Y)
|
| 156 |
+
Z = np.real(Z)
|
| 157 |
+
|
| 158 |
+
fig = plt.figure(figsize=(12, 10))
|
| 159 |
+
ax = fig.add_subplot(111, projection='3d')
|
| 160 |
+
surf = ax.plot_surface(X, Y, Z, cmap=color_scheme, alpha=0.8)
|
| 161 |
+
ax.set_xlabel('x', fontsize=12)
|
| 162 |
+
ax.set_ylabel('y', fontsize=12)
|
| 163 |
+
ax.set_zlabel('z', fontsize=12)
|
| 164 |
+
ax.set_title(title or f'z = {equation}', fontsize=14)
|
| 165 |
+
fig.colorbar(surf, shrink=0.5, aspect=5)
|
| 166 |
+
|
| 167 |
+
return fig
|
| 168 |
+
|
| 169 |
+
except Exception as e:
|
| 170 |
+
fig = plt.figure(figsize=(12, 10))
|
| 171 |
+
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 172 |
+
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 173 |
+
plt.title('Error in 3D equation')
|
| 174 |
+
return fig
|
| 175 |
+
|
| 176 |
+
# Initialize visualizer
|
| 177 |
+
visualizer = MathVisualizer()
|
| 178 |
+
|
| 179 |
+
def generate_plot(plot_type, equation, x_equation, y_equation,
|
| 180 |
+
x_min, x_max, y_min, y_max, t_min, t_max, theta_min, theta_max,
|
| 181 |
+
color, line_style, color_scheme, show_grid, custom_title):
|
| 182 |
+
|
| 183 |
+
plt.close('all') # Close any existing plots
|
| 184 |
|
|
|
|
|
|
|
| 185 |
try:
|
| 186 |
+
if plot_type == "2D Function (y = f(x))":
|
| 187 |
+
fig = visualizer.plot_2d_function(
|
| 188 |
+
equation, (x_min, x_max), (y_min, y_max),
|
| 189 |
+
color, line_style, show_grid, custom_title
|
| 190 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
elif plot_type == "Parametric (x = f(t), y = g(t))":
|
| 193 |
+
fig = visualizer.plot_parametric(
|
| 194 |
+
x_equation, y_equation, (t_min, t_max),
|
| 195 |
+
color, line_style, show_grid, custom_title
|
| 196 |
+
)
|
| 197 |
|
| 198 |
+
elif plot_type == "Polar (r = f(θ))":
|
| 199 |
+
fig = visualizer.plot_polar(
|
| 200 |
+
equation, (theta_min, theta_max),
|
| 201 |
+
color, line_style, show_grid, custom_title
|
| 202 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
elif plot_type == "Implicit (F(x,y) = 0)":
|
| 205 |
+
fig = visualizer.plot_implicit(
|
| 206 |
+
equation, (x_min, x_max), (y_min, y_max),
|
| 207 |
+
color, show_grid, custom_title
|
| 208 |
+
)
|
| 209 |
|
| 210 |
+
elif plot_type == "3D Surface (z = f(x,y))":
|
| 211 |
+
fig = visualizer.plot_3d_surface(
|
| 212 |
+
equation, (x_min, x_max), (y_min, y_max),
|
| 213 |
+
color_scheme, custom_title
|
| 214 |
+
)
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
return fig
|
| 217 |
|
| 218 |
except Exception as e:
|
| 219 |
+
plt.figure(figsize=(10, 8))
|
| 220 |
plt.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 221 |
transform=plt.gca().transAxes, fontsize=12, color='red')
|
| 222 |
+
plt.title('Error generating plot')
|
| 223 |
+
return plt.gcf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
# Example equations for different types
|
|
|
|
| 226 |
examples = {
|
| 227 |
+
"2D Function (y = f(x))": [
|
| 228 |
+
"sin(x)",
|
| 229 |
+
"x**2 + 2*x + 1",
|
| 230 |
+
"exp(-x**2)",
|
| 231 |
+
"tan(x)",
|
| 232 |
+
"log(abs(x))"
|
| 233 |
+
],
|
| 234 |
+
"Parametric (x = f(t), y = g(t))": [
|
| 235 |
+
("cos(t)", "sin(t)"), # Circle
|
| 236 |
+
("t*cos(t)", "t*sin(t)"), # Spiral
|
| 237 |
+
("cos(3*t)", "sin(2*t)"), # Lissajous
|
| 238 |
+
],
|
| 239 |
+
"Polar (r = f(θ))": [
|
| 240 |
+
"1 + cos(theta)", # Cardioid
|
| 241 |
+
"sin(4*theta)", # Rose
|
| 242 |
+
"theta", # Spiral
|
| 243 |
+
],
|
| 244 |
+
"Implicit (F(x,y) = 0)": [
|
| 245 |
+
"x**2 + y**2 - 1", # Circle
|
| 246 |
+
"(x**2 + y**2)**2 - 2*(x**2 - y**2)", # Lemniscate
|
| 247 |
+
"x**3 + y**3 - 3*x*y", # Folium of Descartes
|
| 248 |
+
],
|
| 249 |
+
"3D Surface (z = f(x,y))": [
|
| 250 |
+
"sin(sqrt(x**2 + y**2))",
|
| 251 |
+
"x**2 - y**2",
|
| 252 |
+
"exp(-(x**2 + y**2))",
|
| 253 |
+
]
|
| 254 |
}
|
| 255 |
|
| 256 |
def load_example(plot_type, example_idx):
|
| 257 |
+
if plot_type in examples:
|
| 258 |
+
example_list = examples[plot_type]
|
| 259 |
+
if 0 <= example_idx < len(example_list):
|
| 260 |
+
example = example_list[example_idx]
|
| 261 |
+
if plot_type == "Parametric (x = f(t), y = g(t))":
|
| 262 |
+
return example[0], example[1], "", ""
|
| 263 |
+
else:
|
| 264 |
+
return example, "", "", ""
|
| 265 |
+
return "", "", "", ""
|
| 266 |
|
| 267 |
# Create Gradio interface
|
| 268 |
+
with gr.Blocks(title="Mathematical Equation Visualizer", theme=gr.themes.Soft()) as demo:
|
| 269 |
+
gr.Markdown("""
|
|
|
|
| 270 |
# 📊 Mathematical Equation Visualizer
|
| 271 |
|
|
|
|
| 272 |
Generate beautiful visualizations of mathematical equations with various plot types and customization options.
|
| 273 |
|
| 274 |
**Supported functions:** sin, cos, tan, exp, log, sqrt, abs, and basic arithmetic (+, -, *, /, **)
|
| 275 |
""")
|
| 276 |
+
|
| 277 |
+
with gr.Row():
|
| 278 |
+
with gr.Column(scale=1):
|
| 279 |
+
plot_type = gr.Dropdown(
|
| 280 |
+
choices=[
|
| 281 |
+
"2D Function (y = f(x))",
|
| 282 |
+
"Parametric (x = f(t), y = g(t))",
|
| 283 |
+
"Polar (r = f(θ))",
|
| 284 |
+
"Implicit (F(x,y) = 0)",
|
| 285 |
+
"3D Surface (z = f(x,y))"
|
| 286 |
+
],
|
| 287 |
+
value="2D Function (y = f(x))",
|
| 288 |
+
label="Plot Type"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
)
|
| 290 |
|
| 291 |
+
with gr.Group():
|
| 292 |
+
equation = gr.Textbox(
|
| 293 |
+
value="sin(x)",
|
| 294 |
+
label="Equation",
|
| 295 |
+
placeholder="e.g., sin(x), x**2 + 1, etc."
|
| 296 |
)
|
| 297 |
+
|
| 298 |
+
with gr.Row(visible=False) as parametric_inputs:
|
| 299 |
+
x_equation = gr.Textbox(
|
| 300 |
+
label="x = f(t)",
|
| 301 |
+
placeholder="e.g., cos(t)"
|
| 302 |
+
)
|
| 303 |
+
y_equation = gr.Textbox(
|
| 304 |
+
label="y = g(t)",
|
| 305 |
+
placeholder="e.g., sin(t)"
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
with gr.Group():
|
| 309 |
+
gr.Markdown("### Range Settings")
|
| 310 |
+
with gr.Row():
|
| 311 |
+
x_min = gr.Number(value=-10, label="x min")
|
| 312 |
+
x_max = gr.Number(value=10, label="x max")
|
| 313 |
+
with gr.Row():
|
| 314 |
+
y_min = gr.Number(value=-10, label="y min")
|
| 315 |
+
y_max = gr.Number(value=10, label="y max")
|
| 316 |
+
with gr.Row():
|
| 317 |
+
t_min = gr.Number(value=0, label="t min")
|
| 318 |
+
t_max = gr.Number(value=6.28, label="t max")
|
| 319 |
+
with gr.Row():
|
| 320 |
+
theta_min = gr.Number(value=0, label="θ min")
|
| 321 |
+
theta_max = gr.Number(value=6.28, label="θ max")
|
| 322 |
+
|
| 323 |
+
with gr.Group():
|
| 324 |
+
gr.Markdown("### Style Settings")
|
| 325 |
+
color = gr.ColorPicker(value="#1f77b4", label="Line Color")
|
| 326 |
+
line_style = gr.Dropdown(
|
| 327 |
+
choices=["-", "--", "-.", ":"],
|
| 328 |
+
value="-",
|
| 329 |
+
label="Line Style"
|
| 330 |
)
|
| 331 |
+
color_scheme = gr.Dropdown(
|
| 332 |
+
choices=["viridis", "plasma", "inferno", "magma", "coolwarm", "RdYlBu"],
|
| 333 |
+
value="viridis",
|
| 334 |
+
label="3D Color Scheme"
|
| 335 |
+
)
|
| 336 |
+
show_grid = gr.Checkbox(value=True, label="Show Grid")
|
| 337 |
+
custom_title = gr.Textbox(label="Custom Title (optional)")
|
| 338 |
+
|
| 339 |
+
generate_btn = gr.Button("🎨 Generate Plot", variant="primary")
|
| 340 |
+
|
| 341 |
+
# Example buttons
|
| 342 |
+
gr.Markdown("### 📚 Examples")
|
| 343 |
+
example_dropdown = gr.Dropdown(
|
| 344 |
+
choices=["Select an example..."],
|
| 345 |
+
label="Load Example"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
)
|
| 347 |
+
|
| 348 |
+
with gr.Column(scale=2):
|
| 349 |
+
output_plot = gr.Plot(label="Generated Plot")
|
| 350 |
+
|
| 351 |
+
# Event handlers
|
| 352 |
+
def update_inputs(plot_type):
|
| 353 |
+
parametric_visible = plot_type == "Parametric (x = f(t), y = g(t))"
|
| 354 |
|
| 355 |
+
# Update example dropdown
|
| 356 |
+
if plot_type in examples:
|
| 357 |
+
example_choices = ["Select an example..."] + [
|
| 358 |
+
f"Example {i+1}" for i in range(len(examples[plot_type]))
|
| 359 |
+
]
|
| 360 |
+
else:
|
| 361 |
+
example_choices = ["Select an example..."]
|
| 362 |
|
| 363 |
+
return (
|
| 364 |
+
gr.update(visible=parametric_visible),
|
| 365 |
+
gr.update(choices=example_choices, value="Select an example...")
|
|
|
|
|
|
|
| 366 |
)
|
| 367 |
+
|
| 368 |
+
def load_example_equations(plot_type, example_choice):
|
| 369 |
+
if example_choice == "Select an example...":
|
| 370 |
+
return "", "", "", ""
|
| 371 |
|
| 372 |
+
try:
|
| 373 |
+
example_idx = int(example_choice.split()[-1]) - 1
|
| 374 |
+
return load_example(plot_type, example_idx)
|
| 375 |
+
except:
|
| 376 |
+
return "", "", "", ""
|
| 377 |
|
| 378 |
+
plot_type.change(
|
| 379 |
+
update_inputs,
|
| 380 |
+
inputs=[plot_type],
|
| 381 |
+
outputs=[parametric_inputs, example_dropdown]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
)
|
| 383 |
|
| 384 |
+
example_dropdown.change(
|
| 385 |
+
load_example_equations,
|
| 386 |
+
inputs=[plot_type, example_dropdown],
|
| 387 |
+
outputs=[equation, x_equation, y_equation, custom_title]
|
| 388 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
+
generate_btn.click(
|
| 391 |
+
generate_plot,
|
| 392 |
+
inputs=[
|
| 393 |
+
plot_type, equation, x_equation, y_equation,
|
| 394 |
+
x_min, x_max, y_min, y_max, t_min, t_max, theta_min, theta_max,
|
| 395 |
+
color, line_style, color_scheme, show_grid, custom_title
|
| 396 |
+
],
|
| 397 |
+
outputs=[output_plot]
|
| 398 |
+
)
|
| 399 |
|
| 400 |
+
# Auto-generate on equation change
|
| 401 |
+
equation.change(
|
| 402 |
+
generate_plot,
|
| 403 |
+
inputs=[
|
| 404 |
+
plot_type, equation, x_equation, y_equation,
|
| 405 |
+
x_min, x_max, y_min, y_max, t_min, t_max, theta_min, theta_max,
|
| 406 |
+
color, line_style, color_scheme, show_grid, custom_title
|
| 407 |
+
],
|
| 408 |
+
outputs=[output_plot]
|
| 409 |
+
)
|
|
|
|
| 410 |
|
| 411 |
+
if __name__ == "__main__":
|
| 412 |
+
demo.launch(share=True)
|