Update README.md
Browse files
README.md
CHANGED
|
@@ -1,14 +1,95 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 📊 Mathematical Equation Visualizer
|
| 2 |
+
|
| 3 |
+
An interactive web application for visualizing mathematical equations with multiple plot types and customization options.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Multiple Plot Types:**
|
| 8 |
+
- 2D Functions (y = f(x))
|
| 9 |
+
- Parametric Equations (x = f(t), y = g(t))
|
| 10 |
+
- Polar Equations (r = f(θ))
|
| 11 |
+
- Implicit Equations (F(x,y) = 0)
|
| 12 |
+
- 3D Surface Plots (z = f(x,y))
|
| 13 |
+
- **Customization Options:**
|
| 14 |
+
- Adjustable plot ranges
|
| 15 |
+
- Color selection
|
| 16 |
+
- Line styles
|
| 17 |
+
- Grid toggle
|
| 18 |
+
- Custom titles
|
| 19 |
+
- Multiple color schemes for 3D plots
|
| 20 |
+
- **Built-in Examples:**
|
| 21 |
+
- Pre-loaded examples for each plot type
|
| 22 |
+
- Easy-to-use example selector
|
| 23 |
+
|
| 24 |
+
## Supported Mathematical Functions
|
| 25 |
+
|
| 26 |
+
- Trigonometric: `sin`, `cos`, `tan`
|
| 27 |
+
- Exponential: `exp`, `log`
|
| 28 |
+
- Power: `sqrt`, `**` (exponentiation)
|
| 29 |
+
- Basic arithmetic: `+`, `-`, `*`, `/`
|
| 30 |
+
- Other: `abs`
|
| 31 |
+
|
| 32 |
+
## Usage Examples
|
| 33 |
+
|
| 34 |
+
### 2D Functions
|
| 35 |
+
|
| 36 |
+
- `sin(x)` - Sine wave
|
| 37 |
+
- `x**2 + 2*x + 1` - Parabola
|
| 38 |
+
- `exp(-x**2)` - Gaussian curve
|
| 39 |
+
|
| 40 |
+
### Parametric Equations
|
| 41 |
+
|
| 42 |
+
- x: `cos(t)`, y: `sin(t)` - Circle
|
| 43 |
+
- x: `t*cos(t)`, y: `t*sin(t)` - Spiral
|
| 44 |
+
|
| 45 |
+
### Polar Equations
|
| 46 |
+
|
| 47 |
+
- `1 + cos(theta)` - Cardioid
|
| 48 |
+
- `sin(4*theta)` - Four-petaled rose
|
| 49 |
+
|
| 50 |
+
### Implicit Equations
|
| 51 |
+
|
| 52 |
+
- `x**2 + y**2 - 1` - Circle
|
| 53 |
+
- `x**3 + y**3 - 3*x*y` - Folium of Descartes
|
| 54 |
+
|
| 55 |
+
### 3D Surfaces
|
| 56 |
+
|
| 57 |
+
- `sin(sqrt(x**2 + y**2))` - Sinc function
|
| 58 |
+
- `x**2 - y**2` - Hyperbolic paraboloid
|
| 59 |
+
|
| 60 |
+
## How to Use
|
| 61 |
+
|
| 62 |
+
1. Select a plot type from the dropdown menu
|
| 63 |
+
1. Enter your mathematical equation using the supported functions
|
| 64 |
+
1. Adjust the plot ranges as needed
|
| 65 |
+
1. Customize colors, line styles, and other visual options
|
| 66 |
+
1. Click “Generate Plot” or let it auto-generate as you type
|
| 67 |
+
1. Use the examples section to load pre-made equations
|
| 68 |
+
|
| 69 |
+
## Technical Details
|
| 70 |
+
|
| 71 |
+
- Built with Gradio for the web interface
|
| 72 |
+
- Uses Matplotlib for plotting
|
| 73 |
+
- SymPy for mathematical expression parsing
|
| 74 |
+
- NumPy for numerical computations
|
| 75 |
+
|
| 76 |
+
## Deployment
|
| 77 |
+
|
| 78 |
+
This application is ready to be deployed on Hugging Face Spaces. Simply:
|
| 79 |
+
|
| 80 |
+
1. Create a new Space on Hugging Face
|
| 81 |
+
1. Upload the `app.py` and `requirements.txt` files
|
| 82 |
+
1. The app will automatically build and deploy
|
| 83 |
+
|
| 84 |
+
## Error Handling
|
| 85 |
+
|
| 86 |
+
The application includes robust error handling for:
|
| 87 |
+
|
| 88 |
+
- Invalid mathematical expressions
|
| 89 |
+
- Division by zero
|
| 90 |
+
- Complex number results (automatically converted to real)
|
| 91 |
+
- Infinite values (clipped for display)
|
| 92 |
+
|
| 93 |
+
-----
|
| 94 |
+
|
| 95 |
+
**Note:** This application is designed for educational and visualization purposes. For complex mathematical analysis, consider using specialized mathematical software.
|