File size: 11,296 Bytes
3b8bcb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#-------------------------------------------------------------------------------
# Name:        mst_utils.py
# Purpose:     utilize functions for skeleton generation
# RigNet Copyright 2020 University of Massachusetts
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License.
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet.
#-------------------------------------------------------------------------------

import sys
import numpy as np
from utils.tree_utils import TreeNode
from utils.rig_parser import Skel


def inside_check(pts, vox):
    """

    Check where points are inside or outside the mesh based on its voxelization.

    :param pts: points to be checked

    :param vox: voxelized mesh

    :return: internal points, and index of them in the input array.

    """
    vc = (pts - vox.translate) / vox.scale * vox.dims[0]
    vc = np.round(vc).astype(int)
    ind1 = np.logical_and(np.all(vc >= 0, axis=1), np.all(vc < 88, axis=1))
    vc = np.clip(vc, 0, 87)
    ind2 = vox.data[vc[:, 0], vc[:, 1], vc[:, 2]]
    ind = np.logical_and(ind1, ind2)
    pts = pts[ind]
    return pts, np.argwhere(ind).squeeze()


def sample_on_bone(p_pos, ch_pos):
    """

    sample points on a bone

    :param p_pos: parent joint position

    :param ch_pos: child joint position

    :return: a array of samples on this bone.

    """
    ray = ch_pos - p_pos
    bone_length = np.sqrt(np.sum((p_pos - ch_pos) ** 2))
    num_step = np.round(bone_length / 0.01)
    i_step = np.arange(1, num_step + 1)
    unit_step = ray / (num_step + 1e-30)
    unit_step = np.repeat(unit_step[np.newaxis, :], num_step, axis=0)
    res = p_pos + unit_step * i_step[:, np.newaxis]
    return res


def minKey(key, mstSet, nV):
    # Initilaize min value
    min = sys.maxsize
    for v in range(nV):
        if key[v] < min and mstSet[v] == False:
            min = key[v]
            min_index = v
    return min_index


def primMST(graph, init_id):
    """

    Original prim MST algorithm https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

    """
    nV = graph.shape[0]
    # Key values used to pick minimum weight edge in cut
    key = [sys.maxsize] * nV
    parent = [None] * nV  # Array to store constructed MST
    mstSet = [False] * nV
    # Make key init_id so that this vertex is picked as first vertex
    key[init_id] = 0
    parent[init_id] = -1  # First node is always the root of

    for cout in range(nV):
        # Pick the minimum distance vertex from
        # the set of vertices not yet processed.
        # u is always equal to src in first iteration
        u = minKey(key, mstSet, nV)

        # Put the minimum distance vertex in
        # the shortest path tree
        mstSet[u] = True

        # Update dist value of the adjacent vertices
        # of the picked vertex only if the current
        # distance is greater than new distance and
        # the vertex in not in the shotest path tree
        for v in range(nV):
            # graph[u][v] is non zero only for adjacent vertices of m
            # mstSet[v] is false for vertices not yet included in MST
            # Update the key only if graph[u][v] is smaller than key[v]
            if graph[u,v] > 0 and mstSet[v] == False and key[v] > graph[u,v]:
                key[v] = graph[u,v]
                parent[v] = u

    return parent, key


def primMST_symmetry(graph, init_id, joints):
    """

    my modified prim algorithm to generate a tree as symmetric as possible.

    Not guaranteed to be symmetric. All heuristics.

    :param graph: pairwise cost matrix

    :param init_id: init node ID as root

    :param joints: joint positions J*3

    :return:

    """
    joint_mapping = {}
    left_joint_ids = np.argwhere(joints[:, 0] < -2e-2).squeeze(1).tolist()
    middle_joint_ids = np.argwhere(np.abs(joints[:, 0]) <= 2e-2).squeeze(1).tolist()
    right_joint_ids = np.argwhere(joints[:, 0] > 2e-2).squeeze(1).tolist()
    for i in range(len(left_joint_ids)):
        joint_mapping[left_joint_ids[i]] = right_joint_ids[i]
    for i in range(len(right_joint_ids)):
        joint_mapping[right_joint_ids[i]] = left_joint_ids[i]

    if init_id not in middle_joint_ids:
        #find nearest joint in the middle to be root
        if len(middle_joint_ids) > 0:
            nearest_id = np.argmin(np.linalg.norm(joints[middle_joint_ids, :] - joints[init_id, :][np.newaxis, :], axis=1))
            init_id = middle_joint_ids[nearest_id]

    nV = graph.shape[0]
    # Key values used to pick minimum weight edge in cut
    key = [sys.maxsize] * nV
    parent = [None] * nV  # Array to store constructed MST
    mstSet = [False] * nV
    # Make key init_id so that this vertex is picked as first vertex
    key[init_id] = 0
    parent[init_id] = -1  # First node is always the root of

    while not all(mstSet):
        # Pick the minimum distance vertex from
        # the set of vertices not yet processed.
        # u is always equal to src in first iteration
        u = minKey(key, mstSet, nV)
        # left cases
        if u in left_joint_ids and parent[u] in middle_joint_ids:
            u2 = joint_mapping[u]
            if mstSet[u2] is False:
                mstSet[u2] = True
                parent[u2] = parent[u]
                key[u2] = graph[u2, parent[u2]]
        elif u in left_joint_ids and parent[u] in left_joint_ids:
            u2 = joint_mapping[u]
            if mstSet[u2] is False:
                mstSet[u2] = True
                parent[u2] = joint_mapping[parent[u]]
                key[u2] = graph[u2, parent[u2]]
        elif u in left_joint_ids and parent[u] in right_joint_ids:
            u2 = joint_mapping[u]
            if mstSet[u2] is False:
                mstSet[u2] = True
                parent[u2] = joint_mapping[parent[u]]
                key[u2] = graph[u2, parent[u2]]

        # right cases
        elif u in right_joint_ids and parent[u] in middle_joint_ids:
            u2 = joint_mapping[u]
            if mstSet[u2] is False:
                mstSet[u2] = True
                parent[u2] = parent[u]
                key[u2] = graph[u2, parent[u2]]
        elif u in right_joint_ids and parent[u] in right_joint_ids:
            u2 = joint_mapping[u]
            if mstSet[u2] is False:
                mstSet[u2] = True
                parent[u2] = joint_mapping[parent[u]]
                key[u2] = graph[u2, parent[u2]]
        elif u in right_joint_ids and parent[u] in left_joint_ids:
            u2 = joint_mapping[u]
            if mstSet[u2] is False:
                mstSet[u2] = True
                parent[u2] = joint_mapping[parent[u]]
                key[u2] = graph[u2, parent[u2]]
        # middle case
        else:
            u2 = None

        mstSet[u] = True

        # Update dist value of the adjacent vertices
        # of the picked vertex only if the current
        # distance is greater than new distance and
        # the vertex in not in the shotest path tree
        for v in range(nV):
            # graph[u][v] is non zero only for adjacent vertices of m
            # mstSet[v] is false for vertices not yet included in MST
            # Update the key only if graph[u][v] is smaller than key[v]
            if graph[u,v] > 0 and mstSet[v] == False and key[v] > graph[u,v]:
                key[v] = graph[u,v]
                parent[v] = u
            if u2 is not None and graph[u2,v] > 0 and mstSet[v] == False and key[v] > graph[u2,v]:
                key[v] = graph[u2, v]
                parent[v] = u2

    return parent, key, init_id


def loadSkel_recur(p_node, parent_id, joint_name, joint_pos, parent):
    """

    Converst prim algorithm result to our skel/info format recursively

    :param p_node: Root node

    :param parent_id: parent name of current step of recursion.

    :param joint_name: list of joint names

    :param joint_pos: joint positions

    :param parent: parent index returned by prim alg.

    :return: p_node (root) will be expanded to linked with all joints

    """
    for i in range(len(parent)):
        if parent[i] == parent_id:
            if joint_name is not None:
                ch_node = TreeNode(joint_name[i], tuple(joint_pos[i]))
            else:
                ch_node = TreeNode('joint_{}'.format(i), tuple(joint_pos[i]))
            p_node.children.append(ch_node)
            ch_node.parent = p_node
            loadSkel_recur(ch_node, i, joint_name, joint_pos, parent)


def unique_rows(a):
    """

    remove repeat rows from a numpy array

    """
    a = np.ascontiguousarray(a)
    unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
    return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))


def increase_cost_for_outside_bone(cost_matrix, joint_pos, vox):
    """

    increase connectivity cost for bones outside the meshs

    """
    for i in range(len(joint_pos)):
        for j in range(i+1, len(joint_pos)):
            bone_samples = sample_on_bone(joint_pos[i], joint_pos[j])
            bone_samples_vox = (bone_samples - vox.translate) / vox.scale * vox.dims[0]
            bone_samples_vox = np.round(bone_samples_vox).astype(int)

            ind1 = np.logical_and(np.all(bone_samples_vox >= 0, axis=1), np.all(bone_samples_vox < vox.dims[0], axis=1))
            bone_samples_vox = np.clip(bone_samples_vox, 0, vox.dims[0]-1)
            ind2 = vox.data[bone_samples_vox[:, 0], bone_samples_vox[:, 1], bone_samples_vox[:, 2]]
            in_flags = np.logical_and(ind1, ind2)
            outside_bone_sample = np.sum(in_flags == False)

            if outside_bone_sample > 1:
                cost_matrix[i, j] = 2 * outside_bone_sample
                cost_matrix[j, i] = 2 * outside_bone_sample
            if np.abs(joint_pos[i, 0]) < 2e-2 and np.abs(joint_pos[j, 0]) < 2e-2:
                cost_matrix[i, j] *= 0.5
                cost_matrix[j, i] *= 0.5
    return cost_matrix


def flip(pred_joints):
    """

    symmetrize the predicted joints by reflecting joints on the left half space to the right

    :param pred_joints: raw predicted joints

    :return: symmetrized predicted joints

    """
    pred_joints_left = pred_joints[np.argwhere(pred_joints[:, 0] < -2e-2).squeeze(), :]
    pred_joints_middle = pred_joints[np.argwhere(np.abs(pred_joints[:, 0]) <= 2e-2).squeeze(), :]

    if pred_joints_left.ndim == 1:
        pred_joints_left = pred_joints_left[np.newaxis, :]
    if pred_joints_middle.ndim == 1:
        pred_joints_middle = pred_joints_middle[np.newaxis, :]

    pred_joints_middle[:, 0] = 0.0
    pred_joints_right = np.copy(pred_joints_left)
    pred_joints_right[:, 0] = -pred_joints_right[:, 0]
    pred_joints_res = np.concatenate((pred_joints_left, pred_joints_middle, pred_joints_right), axis=0)
    side_indicator = np.concatenate((-np.ones(len(pred_joints_left)), np.zeros(len(pred_joints_middle)), np.ones(len(pred_joints_right))), axis=0)
    return pred_joints_res, side_indicator