Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,1087 @@
|
|
| 2 |
import keras
|
| 3 |
# For random calculations
|
| 4 |
import numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Disable eager execution because its bad
|
| 7 |
from tensorflow.python.framework.ops import disable_eager_execution
|
| 8 |
disable_eager_execution()
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# This function loads a fuckton of data
|
| 12 |
def load_data():
|
| 13 |
# Open all the files we downloaded at the beginning and take out hte good bits
|
|
@@ -31,9 +1106,6 @@ def load_data():
|
|
| 31 |
|
| 32 |
# Return good bits to user
|
| 33 |
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
|
| 34 |
-
|
| 35 |
-
import gradio
|
| 36 |
-
import pandas
|
| 37 |
|
| 38 |
curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()
|
| 39 |
|
|
|
|
| 2 |
import keras
|
| 3 |
# For random calculations
|
| 4 |
import numpy
|
| 5 |
+
|
| 6 |
+
import gradio
|
| 7 |
+
import pandas
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# New for geometry creation
|
| 11 |
+
import glob
|
| 12 |
+
import os
|
| 13 |
+
import shutil
|
| 14 |
+
import stat
|
| 15 |
+
import math
|
| 16 |
+
import platform
|
| 17 |
+
import scipy.spatial
|
| 18 |
|
| 19 |
# Disable eager execution because its bad
|
| 20 |
from tensorflow.python.framework.ops import disable_eager_execution
|
| 21 |
disable_eager_execution()
|
| 22 |
|
| 23 |
|
| 24 |
+
# Big bunch of geometry stuff
|
| 25 |
+
import glob
|
| 26 |
+
import os
|
| 27 |
+
import shutil
|
| 28 |
+
import stat
|
| 29 |
+
import math
|
| 30 |
+
import platform
|
| 31 |
+
import scipy.spatial
|
| 32 |
+
|
| 33 |
+
class Mesh:
|
| 34 |
+
def __init__(self):
|
| 35 |
+
# Define blank values
|
| 36 |
+
self.np = 0
|
| 37 |
+
self.nf = 0
|
| 38 |
+
self.X = []
|
| 39 |
+
self.Y = []
|
| 40 |
+
self.Z = []
|
| 41 |
+
self.P = []
|
| 42 |
+
|
| 43 |
+
def combine_meshes(self, ob1, ob2):
|
| 44 |
+
# Check for largest mesh
|
| 45 |
+
if ob1.nf < ob2.nf:
|
| 46 |
+
coin_test = ob1.make_coin()
|
| 47 |
+
coin_target = ob2.make_coin()
|
| 48 |
+
else:
|
| 49 |
+
coin_test = ob2.make_coin()
|
| 50 |
+
coin_target = ob1.make_coin()
|
| 51 |
+
# Check for duplicate panels
|
| 52 |
+
deletion_list = []
|
| 53 |
+
for iF in range(numpy.size(coin_test[1, 1, :])):
|
| 54 |
+
panel_test = coin_test[:, :, iF]
|
| 55 |
+
for iFF in range(numpy.size(coin_target[1, 1, :])):
|
| 56 |
+
panel_target = coin_target[:, :, iFF]
|
| 57 |
+
if numpy.sum(panel_test == panel_target) == 12:
|
| 58 |
+
coin_target = numpy.delete(coin_target, iFF, 2)
|
| 59 |
+
deletion_list.append(iF)
|
| 60 |
+
coin_test = numpy.delete(coin_test, deletion_list, 2)
|
| 61 |
+
|
| 62 |
+
# Concatenate unique meshes
|
| 63 |
+
coin = numpy.concatenate((coin_test, coin_target), axis=2)
|
| 64 |
+
self.np = numpy.size(coin[1, 1, :]) * 4
|
| 65 |
+
self.nf = numpy.size(coin[1, 1, :])
|
| 66 |
+
self.X = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
| 67 |
+
self.Y = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
| 68 |
+
self.Z = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
| 69 |
+
self.P = numpy.zeros((numpy.size(coin[1, 1, :]), 4), dtype=int)
|
| 70 |
+
|
| 71 |
+
iP = 0
|
| 72 |
+
for iF in range(numpy.size(coin[1, 1, :])):
|
| 73 |
+
for iC in range(4):
|
| 74 |
+
self.X[iP] = coin[0, iC, iF]
|
| 75 |
+
self.Y[iP] = coin[1, iC, iF]
|
| 76 |
+
self.Z[iP] = coin[2, iC, iF]
|
| 77 |
+
iP += 1
|
| 78 |
+
self.P[iF, 0] = 1 + iF * 4
|
| 79 |
+
self.P[iF, 1] = 2 + iF * 4
|
| 80 |
+
self.P[iF, 2] = 3 + iF * 4
|
| 81 |
+
self.P[iF, 3] = 4 + iF * 4
|
| 82 |
+
|
| 83 |
+
def make_coin(self):
|
| 84 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 85 |
+
for iF in range(self.nf):
|
| 86 |
+
for iC in range(4):
|
| 87 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 88 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 89 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 90 |
+
return coin
|
| 91 |
+
|
| 92 |
+
def delete_horizontal_panels(self):
|
| 93 |
+
coin = self.make_coin()
|
| 94 |
+
apex = numpy.min(self.Z)
|
| 95 |
+
zLoc = numpy.zeros(4)
|
| 96 |
+
deletion_list = []
|
| 97 |
+
|
| 98 |
+
# Check every panel for horizontality and higher position than lowest point
|
| 99 |
+
for iP in range(self.nf):
|
| 100 |
+
for iC in range(4):
|
| 101 |
+
zLoc[iC] = coin[2, iC, iP]
|
| 102 |
+
if numpy.abs(numpy.mean(zLoc) - zLoc[0]) < 0.001 and numpy.mean(zLoc) > apex:
|
| 103 |
+
deletion_list.append(iP)
|
| 104 |
+
|
| 105 |
+
# Delete selected panels
|
| 106 |
+
coin = numpy.delete(coin, deletion_list, 2)
|
| 107 |
+
|
| 108 |
+
# Remake mesh
|
| 109 |
+
self.np = numpy.size(coin[1, 1, :]) * 4
|
| 110 |
+
self.nf = numpy.size(coin[1, 1, :])
|
| 111 |
+
self.X = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
| 112 |
+
self.Y = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
| 113 |
+
self.Z = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
| 114 |
+
self.P = numpy.zeros((numpy.size(coin[1, 1, :]), 4), dtype=int)
|
| 115 |
+
|
| 116 |
+
iP = 0
|
| 117 |
+
for iF in range(numpy.size(coin[1, 1, :])):
|
| 118 |
+
for iC in range(4):
|
| 119 |
+
self.X[iP] = coin[0, iC, iF]
|
| 120 |
+
self.Y[iP] = coin[1, iC, iF]
|
| 121 |
+
self.Z[iP] = coin[2, iC, iF]
|
| 122 |
+
iP += 1
|
| 123 |
+
self.P[iF, 0] = 1 + (iF) * 4
|
| 124 |
+
self.P[iF, 1] = 2 + (iF) * 4
|
| 125 |
+
self.P[iF, 2] = 3 + (iF) * 4
|
| 126 |
+
self.P[iF, 3] = 4 + (iF) * 4
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def writeMesh(msh, filename):
|
| 132 |
+
with open(filename, 'w') as f:
|
| 133 |
+
f.write('{:d}\n'.format(msh.np))
|
| 134 |
+
f.write('{:d}\n'.format(msh.nf))
|
| 135 |
+
for iP in range(msh.np):
|
| 136 |
+
f.write(' {:.7f} {:.7f} {:.7f}\n'.format(msh.X[iP], msh.Y[iP], msh.Z[iP]))
|
| 137 |
+
for iF in range(msh.nf):
|
| 138 |
+
f.write(' {:d} {:d} {:d} {:d}\n'.format(msh.P[iF, 0], msh.P[iF, 1], msh.P[iF, 2], msh.P[iF, 3]))
|
| 139 |
+
return None
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class box:
|
| 144 |
+
def __init__(self, length, width, height, cCor):
|
| 145 |
+
self.length = length
|
| 146 |
+
self.width = width
|
| 147 |
+
self.height = height
|
| 148 |
+
self.xC = cCor[0]
|
| 149 |
+
self.yC = cCor[1]
|
| 150 |
+
self.zC = cCor[2]
|
| 151 |
+
self.name = 'box'
|
| 152 |
+
self.panelize()
|
| 153 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 154 |
+
|
| 155 |
+
def panelize(self):
|
| 156 |
+
self.nf = 6
|
| 157 |
+
self.np = 8
|
| 158 |
+
self.X = numpy.array(
|
| 159 |
+
[-self.length / 2.0, self.length / 2.0, -self.length / 2.0, self.length / 2.0, -self.length / 2.0,
|
| 160 |
+
self.length / 2.0, -self.length / 2.0, self.length / 2.0])
|
| 161 |
+
self.Y = numpy.array([self.width / 2.0, self.width / 2.0, self.width / 2.0, self.width / 2.0, -self.width / 2.0,
|
| 162 |
+
-self.width / 2.0, -self.width / 2.0, -self.width / 2.0])
|
| 163 |
+
self.Z = numpy.array(
|
| 164 |
+
[-self.height / 2.0, -self.height / 2.0, self.height / 2.0, self.height / 2.0, -self.height / 2.0,
|
| 165 |
+
-self.height / 2.0, self.height / 2.0, self.height / 2.0])
|
| 166 |
+
self.P = numpy.zeros([6, 4], dtype=int)
|
| 167 |
+
self.P[0, :] = numpy.array([3, 4, 2, 1])
|
| 168 |
+
self.P[1, :] = numpy.array([4, 8, 6, 2])
|
| 169 |
+
self.P[2, :] = numpy.array([8, 7, 5, 6])
|
| 170 |
+
self.P[3, :] = numpy.array([7, 3, 1, 5])
|
| 171 |
+
self.P[4, :] = numpy.array([2, 6, 5, 1])
|
| 172 |
+
self.P[5, :] = numpy.array([8, 4, 3, 7])
|
| 173 |
+
# Define triangles for plotting
|
| 174 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 175 |
+
iT = 0
|
| 176 |
+
for iTr in range(self.nf):
|
| 177 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 178 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 179 |
+
iT += 2
|
| 180 |
+
|
| 181 |
+
def translate(self, xT, yT, zT):
|
| 182 |
+
self.X += xT
|
| 183 |
+
self.Y += yT
|
| 184 |
+
self.Z += zT
|
| 185 |
+
|
| 186 |
+
def rotate(self, a1, a2, theta):
|
| 187 |
+
R = numpy.zeros([3, 3])
|
| 188 |
+
# Normal vector through origin
|
| 189 |
+
u = a2[0] - a1[0]
|
| 190 |
+
v = a2[1] - a1[1]
|
| 191 |
+
w = a2[2] - a1[2]
|
| 192 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 193 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 194 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 195 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 196 |
+
self.X -= a1[0]
|
| 197 |
+
self.Y -= a1[1]
|
| 198 |
+
self.Z -= a1[2]
|
| 199 |
+
|
| 200 |
+
# Rotation matrix
|
| 201 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 202 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 203 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 204 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 205 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 206 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 207 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 208 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 209 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 210 |
+
|
| 211 |
+
for iP in range(self.np):
|
| 212 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 213 |
+
p2 = numpy.dot(R, p1)
|
| 214 |
+
self.X[iP] = p2[0]
|
| 215 |
+
self.Y[iP] = p2[1]
|
| 216 |
+
self.Z[iP] = p2[2]
|
| 217 |
+
|
| 218 |
+
# Translate back to original position
|
| 219 |
+
|
| 220 |
+
self.X += a1[0]
|
| 221 |
+
self.Y += a1[1]
|
| 222 |
+
self.Z += a1[2]
|
| 223 |
+
|
| 224 |
+
def makeCoin(self):
|
| 225 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 226 |
+
for iF in range(self.nf):
|
| 227 |
+
for iC in range(4):
|
| 228 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 229 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 230 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 231 |
+
return coin
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class cone:
|
| 237 |
+
def __init__(self, diameter, height, cCor):
|
| 238 |
+
self.diameter = diameter
|
| 239 |
+
self.height = height
|
| 240 |
+
self.xC = cCor[0]
|
| 241 |
+
self.yC = cCor[1]
|
| 242 |
+
self.zC = cCor[2]
|
| 243 |
+
self.name = 'cone'
|
| 244 |
+
self.panelize()
|
| 245 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 246 |
+
|
| 247 |
+
def panelize(self):
|
| 248 |
+
Ntheta = 18
|
| 249 |
+
Nz = 3
|
| 250 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
| 251 |
+
self.nf = 0
|
| 252 |
+
self.np = 0
|
| 253 |
+
r = [0, self.diameter / 2.0, 0]
|
| 254 |
+
z = [0, 0, -self.height]
|
| 255 |
+
self.X = []
|
| 256 |
+
self.Y = []
|
| 257 |
+
self.Z = []
|
| 258 |
+
self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
|
| 259 |
+
n = len(r)
|
| 260 |
+
|
| 261 |
+
for iT in range(Ntheta):
|
| 262 |
+
for iN in range(n):
|
| 263 |
+
self.X.append(r[iN] * numpy.cos(theta[iT]))
|
| 264 |
+
self.Y.append(r[iN] * numpy.sin(theta[iT]))
|
| 265 |
+
self.Z.append(z[iN])
|
| 266 |
+
self.np += 1
|
| 267 |
+
|
| 268 |
+
iP = 0
|
| 269 |
+
for iN in range(1, n):
|
| 270 |
+
for iT in range(1, Ntheta):
|
| 271 |
+
self.P[iP, 0] = iN + n * (iT - 1)
|
| 272 |
+
self.P[iP, 1] = iN + 1 + n * (iT - 1)
|
| 273 |
+
self.P[iP, 2] = iN + 1 + n * iT
|
| 274 |
+
self.P[iP, 3] = iN + n * iT
|
| 275 |
+
self.nf += 1
|
| 276 |
+
iP += 1
|
| 277 |
+
|
| 278 |
+
self.X = numpy.array(self.X)
|
| 279 |
+
self.Y = numpy.array(self.Y)
|
| 280 |
+
self.Z = numpy.array(self.Z)
|
| 281 |
+
# Define triangles for plotting
|
| 282 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 283 |
+
iT = 0
|
| 284 |
+
for iTr in range(self.nf):
|
| 285 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 286 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 287 |
+
iT += 2
|
| 288 |
+
|
| 289 |
+
def translate(self, xT, yT, zT):
|
| 290 |
+
self.X += xT
|
| 291 |
+
self.Y += yT
|
| 292 |
+
self.Z += zT
|
| 293 |
+
|
| 294 |
+
def rotate(self, a1, a2, theta):
|
| 295 |
+
R = numpy.zeros([3, 3])
|
| 296 |
+
# Normal vector through origin
|
| 297 |
+
u = a2[0] - a1[0]
|
| 298 |
+
v = a2[1] - a1[1]
|
| 299 |
+
w = a2[2] - a1[2]
|
| 300 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 301 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 302 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 303 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 304 |
+
self.X -= a1[0]
|
| 305 |
+
self.Y -= a1[1]
|
| 306 |
+
self.Z -= a1[2]
|
| 307 |
+
|
| 308 |
+
# Rotation matrix
|
| 309 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 310 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 311 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 312 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 313 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 314 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 315 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 316 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 317 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 318 |
+
|
| 319 |
+
for iP in range(self.np):
|
| 320 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 321 |
+
p2 = numpy.dot(R, p1)
|
| 322 |
+
self.X[iP] = p2[0]
|
| 323 |
+
self.Y[iP] = p2[1]
|
| 324 |
+
self.Z[iP] = p2[2]
|
| 325 |
+
|
| 326 |
+
# Translate back to original position
|
| 327 |
+
|
| 328 |
+
self.X += a1[0]
|
| 329 |
+
self.Y += a1[1]
|
| 330 |
+
self.Z += a1[2]
|
| 331 |
+
|
| 332 |
+
def makeCoin(self):
|
| 333 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 334 |
+
for iF in range(self.nf):
|
| 335 |
+
for iC in range(4):
|
| 336 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 337 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 338 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 339 |
+
return coin
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class cylinder:
|
| 344 |
+
def __init__(self, diameter, height, cCor):
|
| 345 |
+
self.diameter = diameter
|
| 346 |
+
self.height = height
|
| 347 |
+
self.xC = cCor[0]
|
| 348 |
+
self.yC = cCor[1]
|
| 349 |
+
self.zC = cCor[2]
|
| 350 |
+
self.name = 'cylinder'
|
| 351 |
+
self.panelize()
|
| 352 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 353 |
+
|
| 354 |
+
def panelize(self):
|
| 355 |
+
Ntheta = 18
|
| 356 |
+
Nz = 3
|
| 357 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
| 358 |
+
self.nf = 0
|
| 359 |
+
self.np = 0
|
| 360 |
+
r = [0, self.diameter / 2.0, self.diameter / 2.0, 0]
|
| 361 |
+
z = [0, 0, -self.height, -self.height]
|
| 362 |
+
self.X = []
|
| 363 |
+
self.Y = []
|
| 364 |
+
self.Z = []
|
| 365 |
+
self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
|
| 366 |
+
n = len(r)
|
| 367 |
+
|
| 368 |
+
for iT in range(Ntheta):
|
| 369 |
+
for iN in range(n):
|
| 370 |
+
self.X.append(r[iN] * numpy.cos(theta[iT]))
|
| 371 |
+
self.Y.append(r[iN] * numpy.sin(theta[iT]))
|
| 372 |
+
self.Z.append(z[iN])
|
| 373 |
+
self.np += 1
|
| 374 |
+
|
| 375 |
+
iP = 0
|
| 376 |
+
for iN in range(1, n):
|
| 377 |
+
for iT in range(1, Ntheta):
|
| 378 |
+
self.P[iP, 0] = iN + n * (iT - 1)
|
| 379 |
+
self.P[iP, 1] = iN + 1 + n * (iT - 1)
|
| 380 |
+
self.P[iP, 2] = iN + 1 + n * iT
|
| 381 |
+
self.P[iP, 3] = iN + n * iT
|
| 382 |
+
self.nf += 1
|
| 383 |
+
iP += 1
|
| 384 |
+
|
| 385 |
+
self.X = numpy.array(self.X)
|
| 386 |
+
self.Y = numpy.array(self.Y)
|
| 387 |
+
self.Z = numpy.array(self.Z)
|
| 388 |
+
# Define triangles for plotting
|
| 389 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 390 |
+
iT = 0
|
| 391 |
+
for iTr in range(self.nf):
|
| 392 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 393 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 394 |
+
iT += 2
|
| 395 |
+
|
| 396 |
+
def translate(self, xT, yT, zT):
|
| 397 |
+
self.X += xT
|
| 398 |
+
self.Y += yT
|
| 399 |
+
self.Z += zT
|
| 400 |
+
|
| 401 |
+
def rotate(self, a1, a2, theta):
|
| 402 |
+
R = numpy.zeros([3, 3])
|
| 403 |
+
# Normal vector through origin
|
| 404 |
+
u = a2[0] - a1[0]
|
| 405 |
+
v = a2[1] - a1[1]
|
| 406 |
+
w = a2[2] - a1[2]
|
| 407 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 408 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 409 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 410 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 411 |
+
self.X -= a1[0]
|
| 412 |
+
self.Y -= a1[1]
|
| 413 |
+
self.Z -= a1[2]
|
| 414 |
+
|
| 415 |
+
# Rotation matrix
|
| 416 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 417 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 418 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 419 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 420 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 421 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 422 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 423 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 424 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 425 |
+
|
| 426 |
+
for iP in range(self.np):
|
| 427 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 428 |
+
p2 = numpy.dot(R, p1)
|
| 429 |
+
self.X[iP] = p2[0]
|
| 430 |
+
self.Y[iP] = p2[1]
|
| 431 |
+
self.Z[iP] = p2[2]
|
| 432 |
+
|
| 433 |
+
# Translate back to original position
|
| 434 |
+
|
| 435 |
+
self.X += a1[0]
|
| 436 |
+
self.Y += a1[1]
|
| 437 |
+
self.Z += a1[2]
|
| 438 |
+
|
| 439 |
+
def makeCoin(self):
|
| 440 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 441 |
+
for iF in range(self.nf):
|
| 442 |
+
for iC in range(4):
|
| 443 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 444 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 445 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 446 |
+
return coin
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
class hemicylinder:
|
| 452 |
+
def __init__(self, diameter, height, cCor):
|
| 453 |
+
self.diameter = diameter
|
| 454 |
+
self.height = height
|
| 455 |
+
self.xC = cCor[0]
|
| 456 |
+
self.yC = cCor[1]
|
| 457 |
+
self.zC = cCor[2]
|
| 458 |
+
self.name = 'hemicylinder'
|
| 459 |
+
self.panelize()
|
| 460 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 461 |
+
|
| 462 |
+
def panelize(self):
|
| 463 |
+
Ntheta = 18
|
| 464 |
+
Nz = 3
|
| 465 |
+
theta = [xx * numpy.pi / (Ntheta - 1) - numpy.pi / 2.0 for xx in range(Ntheta)]
|
| 466 |
+
self.nf = 0
|
| 467 |
+
self.np = 0
|
| 468 |
+
r = [0, self.diameter / 2.0, self.diameter / 2.0, 0]
|
| 469 |
+
z = [self.height / 2.0, self.height / 2.0, -self.height / 2.0, -self.height / 2.0]
|
| 470 |
+
self.X = []
|
| 471 |
+
self.Y = []
|
| 472 |
+
self.Z = []
|
| 473 |
+
self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
|
| 474 |
+
n = len(r)
|
| 475 |
+
|
| 476 |
+
for iT in range(Ntheta):
|
| 477 |
+
for iN in range(n):
|
| 478 |
+
self.Z.append(-r[iN] * numpy.cos(theta[iT]))
|
| 479 |
+
self.X.append(r[iN] * numpy.sin(theta[iT]))
|
| 480 |
+
self.Y.append(z[iN])
|
| 481 |
+
self.np += 1
|
| 482 |
+
|
| 483 |
+
iP = 0
|
| 484 |
+
for iN in range(1, n):
|
| 485 |
+
for iT in range(1, Ntheta):
|
| 486 |
+
self.P[iP, 3] = iN + n * (iT - 1)
|
| 487 |
+
self.P[iP, 2] = iN + 1 + n * (iT - 1)
|
| 488 |
+
self.P[iP, 1] = iN + 1 + n * iT
|
| 489 |
+
self.P[iP, 0] = iN + n * iT
|
| 490 |
+
self.nf += 1
|
| 491 |
+
iP += 1
|
| 492 |
+
|
| 493 |
+
self.X = numpy.array(self.X)
|
| 494 |
+
self.Y = numpy.array(self.Y)
|
| 495 |
+
self.Z = numpy.array(self.Z)
|
| 496 |
+
# Define triangles for plotting
|
| 497 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 498 |
+
iT = 0
|
| 499 |
+
for iTr in range(self.nf):
|
| 500 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 501 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 502 |
+
iT += 2
|
| 503 |
+
|
| 504 |
+
def translate(self, xT, yT, zT):
|
| 505 |
+
self.X += xT
|
| 506 |
+
self.Y += yT
|
| 507 |
+
self.Z += zT
|
| 508 |
+
|
| 509 |
+
def rotate(self, a1, a2, theta):
|
| 510 |
+
R = numpy.zeros([3, 3])
|
| 511 |
+
# Normal vector through origin
|
| 512 |
+
u = a2[0] - a1[0]
|
| 513 |
+
v = a2[1] - a1[1]
|
| 514 |
+
w = a2[2] - a1[2]
|
| 515 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 516 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 517 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 518 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 519 |
+
self.X -= a1[0]
|
| 520 |
+
self.Y -= a1[1]
|
| 521 |
+
self.Z -= a1[2]
|
| 522 |
+
|
| 523 |
+
# Rotation matrix
|
| 524 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 525 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 526 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 527 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 528 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 529 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 530 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 531 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 532 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 533 |
+
|
| 534 |
+
for iP in range(self.np):
|
| 535 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 536 |
+
p2 = numpy.dot(R, p1)
|
| 537 |
+
self.X[iP] = p2[0]
|
| 538 |
+
self.Y[iP] = p2[1]
|
| 539 |
+
self.Z[iP] = p2[2]
|
| 540 |
+
|
| 541 |
+
# Translate back to original position
|
| 542 |
+
|
| 543 |
+
self.X += a1[0]
|
| 544 |
+
self.Y += a1[1]
|
| 545 |
+
self.Z += a1[2]
|
| 546 |
+
|
| 547 |
+
def makeCoin(self):
|
| 548 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 549 |
+
for iF in range(self.nf):
|
| 550 |
+
for iC in range(4):
|
| 551 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 552 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 553 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 554 |
+
return coin
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class sphere:
|
| 558 |
+
def __init__(self, diameter, cCor):
|
| 559 |
+
self.diameter = diameter
|
| 560 |
+
self.xC = cCor[0]
|
| 561 |
+
self.yC = cCor[1]
|
| 562 |
+
self.zC = cCor[2]
|
| 563 |
+
self.name = 'sphere'
|
| 564 |
+
self.panelize()
|
| 565 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 566 |
+
|
| 567 |
+
def panelize(self):
|
| 568 |
+
Ntheta = 18
|
| 569 |
+
Nthetad2 = int(Ntheta / 2)
|
| 570 |
+
Nz = 3
|
| 571 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
| 572 |
+
phi = [xx * numpy.pi / (Ntheta / 2 - 1) for xx in range(Nthetad2)]
|
| 573 |
+
self.nf = 0
|
| 574 |
+
self.np = 0
|
| 575 |
+
r = self.diameter / 2.0
|
| 576 |
+
self.X = []
|
| 577 |
+
self.Y = []
|
| 578 |
+
self.Z = []
|
| 579 |
+
self.P = numpy.zeros([(Ntheta - 1) * (Nthetad2 - 1), 4], dtype=int)
|
| 580 |
+
|
| 581 |
+
for iT in range(Nthetad2):
|
| 582 |
+
for iTT in range(Ntheta):
|
| 583 |
+
self.X.append(r * numpy.cos(theta[iTT]) * numpy.sin(phi[iT]))
|
| 584 |
+
self.Y.append(r * numpy.sin(theta[iTT]) * numpy.sin(phi[iT]))
|
| 585 |
+
self.Z.append(r * numpy.cos(phi[iT]))
|
| 586 |
+
self.np += 1
|
| 587 |
+
|
| 588 |
+
iP = 0
|
| 589 |
+
for iN in range(1, Ntheta):
|
| 590 |
+
for iT in range(1, Nthetad2):
|
| 591 |
+
self.P[iP, 3] = iN + Ntheta * (iT - 1)
|
| 592 |
+
self.P[iP, 2] = iN + 1 + Ntheta * (iT - 1)
|
| 593 |
+
self.P[iP, 1] = iN + 1 + Ntheta * iT
|
| 594 |
+
self.P[iP, 0] = iN + Ntheta * iT
|
| 595 |
+
self.nf += 1
|
| 596 |
+
iP += 1
|
| 597 |
+
self.X = numpy.array(self.X)
|
| 598 |
+
self.Y = numpy.array(self.Y)
|
| 599 |
+
self.Z = numpy.array(self.Z)
|
| 600 |
+
# Define triangles for plotting
|
| 601 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 602 |
+
iT = 0
|
| 603 |
+
for iTr in range(self.nf):
|
| 604 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 605 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 606 |
+
iT += 2
|
| 607 |
+
|
| 608 |
+
def translate(self, xT, yT, zT):
|
| 609 |
+
self.X += xT
|
| 610 |
+
self.Y += yT
|
| 611 |
+
self.Z += zT
|
| 612 |
+
|
| 613 |
+
def rotate(self, a1, a2, theta):
|
| 614 |
+
R = numpy.zeros([3, 3])
|
| 615 |
+
# Normal vector through origin
|
| 616 |
+
u = a2[0] - a1[0]
|
| 617 |
+
v = a2[1] - a1[1]
|
| 618 |
+
w = a2[2] - a1[2]
|
| 619 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 620 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 621 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 622 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 623 |
+
self.X -= a1[0]
|
| 624 |
+
self.Y -= a1[1]
|
| 625 |
+
self.Z -= a1[2]
|
| 626 |
+
|
| 627 |
+
# Rotation matrix
|
| 628 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 629 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 630 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 631 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 632 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 633 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 634 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 635 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 636 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 637 |
+
|
| 638 |
+
for iP in range(self.np):
|
| 639 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 640 |
+
p2 = numpy.dot(R, p1)
|
| 641 |
+
self.X[iP] = p2[0]
|
| 642 |
+
self.Y[iP] = p2[1]
|
| 643 |
+
self.Z[iP] = p2[2]
|
| 644 |
+
|
| 645 |
+
# Translate back to original position
|
| 646 |
+
|
| 647 |
+
self.X += a1[0]
|
| 648 |
+
self.Y += a1[1]
|
| 649 |
+
self.Z += a1[2]
|
| 650 |
+
|
| 651 |
+
def makeCoin(self):
|
| 652 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 653 |
+
for iF in range(self.nf):
|
| 654 |
+
for iC in range(4):
|
| 655 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 656 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 657 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 658 |
+
return coin
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
class hemisphere:
|
| 665 |
+
def __init__(self, diameter, cCor):
|
| 666 |
+
self.diameter = diameter
|
| 667 |
+
self.xC = cCor[0]
|
| 668 |
+
self.yC = cCor[1]
|
| 669 |
+
self.zC = cCor[2]
|
| 670 |
+
self.name = 'hemisphere'
|
| 671 |
+
self.panelize()
|
| 672 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 673 |
+
|
| 674 |
+
def panelize(self):
|
| 675 |
+
Ntheta = 18
|
| 676 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
| 677 |
+
phi = [xx * numpy.pi / 2.0 / (Ntheta / 2 - 1) for xx in range(Ntheta / 2)]
|
| 678 |
+
self.nf = 0
|
| 679 |
+
self.np = 0
|
| 680 |
+
r = self.diameter / 2.0
|
| 681 |
+
self.X = []
|
| 682 |
+
self.Y = []
|
| 683 |
+
self.Z = []
|
| 684 |
+
self.P = numpy.zeros([(Ntheta - 1) * (Ntheta / 2 - 1), 4], dtype=int)
|
| 685 |
+
|
| 686 |
+
for iT in range(Ntheta / 2):
|
| 687 |
+
for iTT in range(Ntheta):
|
| 688 |
+
self.X.append(r * numpy.cos(theta[iTT]) * numpy.sin(phi[iT]))
|
| 689 |
+
self.Y.append(r * numpy.sin(theta[iTT]) * numpy.sin(phi[iT]))
|
| 690 |
+
self.Z.append(-r * numpy.cos(phi[iT]))
|
| 691 |
+
self.np += 1
|
| 692 |
+
|
| 693 |
+
iP = 0
|
| 694 |
+
for iN in range(1, Ntheta):
|
| 695 |
+
for iT in range(1, Ntheta / 2):
|
| 696 |
+
self.P[iP, 0] = iN + Ntheta * (iT - 1)
|
| 697 |
+
self.P[iP, 1] = iN + 1 + Ntheta * (iT - 1)
|
| 698 |
+
self.P[iP, 2] = iN + 1 + Ntheta * iT
|
| 699 |
+
self.P[iP, 3] = iN + Ntheta * iT
|
| 700 |
+
self.nf += 1
|
| 701 |
+
iP += 1
|
| 702 |
+
|
| 703 |
+
self.X = numpy.array(self.X)
|
| 704 |
+
self.Y = numpy.array(self.Y)
|
| 705 |
+
self.Z = numpy.array(self.Z)
|
| 706 |
+
# Define triangles for plotting
|
| 707 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 708 |
+
iT = 0
|
| 709 |
+
for iTr in range(self.nf):
|
| 710 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 711 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 712 |
+
iT += 2
|
| 713 |
+
|
| 714 |
+
def translate(self, xT, yT, zT):
|
| 715 |
+
self.X += xT
|
| 716 |
+
self.Y += yT
|
| 717 |
+
self.Z += zT
|
| 718 |
+
|
| 719 |
+
def rotate(self, a1, a2, theta):
|
| 720 |
+
R = numpy.zeros([3, 3])
|
| 721 |
+
# Normal vector through origin
|
| 722 |
+
u = a2[0] - a1[0]
|
| 723 |
+
v = a2[1] - a1[1]
|
| 724 |
+
w = a2[2] - a1[2]
|
| 725 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 726 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 727 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 728 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 729 |
+
self.X -= a1[0]
|
| 730 |
+
self.Y -= a1[1]
|
| 731 |
+
self.Z -= a1[2]
|
| 732 |
+
|
| 733 |
+
# Rotation matrix
|
| 734 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 735 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 736 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 737 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 738 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 739 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 740 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 741 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 742 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 743 |
+
|
| 744 |
+
for iP in range(self.np):
|
| 745 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 746 |
+
p2 = numpy.dot(R, p1)
|
| 747 |
+
self.X[iP] = p2[0]
|
| 748 |
+
self.Y[iP] = p2[1]
|
| 749 |
+
self.Z[iP] = p2[2]
|
| 750 |
+
|
| 751 |
+
# Translate back to original position
|
| 752 |
+
|
| 753 |
+
self.X += a1[0]
|
| 754 |
+
self.Y += a1[1]
|
| 755 |
+
self.Z += a1[2]
|
| 756 |
+
|
| 757 |
+
def makeCoin(self):
|
| 758 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 759 |
+
for iF in range(self.nf):
|
| 760 |
+
for iC in range(4):
|
| 761 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 762 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 763 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 764 |
+
return coin
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
class pyramid:
|
| 770 |
+
def __init__(self, length, width, height, cCor):
|
| 771 |
+
self.length = length
|
| 772 |
+
self.width = width
|
| 773 |
+
self.height = height
|
| 774 |
+
self.xC = cCor[0]
|
| 775 |
+
self.yC = cCor[1]
|
| 776 |
+
self.zC = cCor[2]
|
| 777 |
+
self.name = 'pyramid'
|
| 778 |
+
self.panelize()
|
| 779 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 780 |
+
|
| 781 |
+
def panelize(self):
|
| 782 |
+
self.nf = 6
|
| 783 |
+
self.np = 8
|
| 784 |
+
self.X = numpy.array(
|
| 785 |
+
[0.0, 0.0, -self.length / 2.0, self.length / 2.0, 0.0, 0.0, -self.length / 2.0, self.length / 2.0])
|
| 786 |
+
self.Y = numpy.array(
|
| 787 |
+
[0.0, 0.0, self.width / 2.0, self.width / 2.0, 0.0, 0.0, -self.width / 2.0, -self.width / 2.0])
|
| 788 |
+
self.Z = numpy.array([-self.height, -self.height, 0.0, 0.0, -self.height, -self.height, 0.0, 0.0])
|
| 789 |
+
self.P = numpy.zeros([6, 4], dtype=int)
|
| 790 |
+
self.P[0, :] = numpy.array([3, 4, 2, 1])
|
| 791 |
+
self.P[1, :] = numpy.array([4, 8, 6, 2])
|
| 792 |
+
self.P[2, :] = numpy.array([8, 7, 5, 6])
|
| 793 |
+
self.P[3, :] = numpy.array([7, 3, 1, 5])
|
| 794 |
+
self.P[4, :] = numpy.array([5, 6, 5, 1])
|
| 795 |
+
self.P[5, :] = numpy.array([8, 4, 3, 7])
|
| 796 |
+
# Define triangles for plotting
|
| 797 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 798 |
+
iT = 0
|
| 799 |
+
for iTr in range(self.nf):
|
| 800 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 801 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 802 |
+
iT += 2
|
| 803 |
+
|
| 804 |
+
def translate(self, xT, yT, zT):
|
| 805 |
+
self.X += xT
|
| 806 |
+
self.Y += yT
|
| 807 |
+
self.Z += zT
|
| 808 |
+
|
| 809 |
+
def rotate(self, a1, a2, theta):
|
| 810 |
+
R = numpy.zeros([3, 3])
|
| 811 |
+
# Normal vector through origin
|
| 812 |
+
u = a2[0] - a1[0]
|
| 813 |
+
v = a2[1] - a1[1]
|
| 814 |
+
w = a2[2] - a1[2]
|
| 815 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 816 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 817 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 818 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 819 |
+
self.X -= a1[0]
|
| 820 |
+
self.Y -= a1[1]
|
| 821 |
+
self.Z -= a1[2]
|
| 822 |
+
|
| 823 |
+
# Rotation matrix
|
| 824 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 825 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 826 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 827 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 828 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 829 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 830 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 831 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 832 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 833 |
+
|
| 834 |
+
for iP in range(self.np):
|
| 835 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 836 |
+
p2 = numpy.dot(R, p1)
|
| 837 |
+
self.X[iP] = p2[0]
|
| 838 |
+
self.Y[iP] = p2[1]
|
| 839 |
+
self.Z[iP] = p2[2]
|
| 840 |
+
|
| 841 |
+
# Translate back to original position
|
| 842 |
+
|
| 843 |
+
self.X += a1[0]
|
| 844 |
+
self.Y += a1[1]
|
| 845 |
+
self.Z += a1[2]
|
| 846 |
+
|
| 847 |
+
def makeCoin(self):
|
| 848 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 849 |
+
for iF in range(self.nf):
|
| 850 |
+
for iC in range(4):
|
| 851 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 852 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 853 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 854 |
+
return coin
|
| 855 |
+
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
class wedge:
|
| 861 |
+
def __init__(self, length, width, height, cCor):
|
| 862 |
+
self.length = length
|
| 863 |
+
self.width = width
|
| 864 |
+
self.height = height
|
| 865 |
+
self.xC = cCor[0]
|
| 866 |
+
self.yC = cCor[1]
|
| 867 |
+
self.zC = cCor[2]
|
| 868 |
+
self.name = 'wedge'
|
| 869 |
+
self.panelize()
|
| 870 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 871 |
+
|
| 872 |
+
def panelize(self):
|
| 873 |
+
self.nf = 6
|
| 874 |
+
self.np = 8
|
| 875 |
+
self.X = numpy.array(
|
| 876 |
+
[0.0, 0.0, -self.length / 2.0, self.length / 2.0, 0.0, 0.0, -self.length / 2.0, self.length / 2.0])
|
| 877 |
+
self.Y = numpy.array([self.width / 2.0, self.width / 2.0, self.width / 2.0, self.width / 2.0, -self.width / 2.0,
|
| 878 |
+
-self.width / 2.0, -self.width / 2.0, -self.width / 2.0])
|
| 879 |
+
self.Z = numpy.array([-self.height, -self.height, 0.0, 0.0, -self.height, -self.height, 0.0, 0.0])
|
| 880 |
+
self.P = numpy.zeros([6, 4], dtype=int)
|
| 881 |
+
self.P[0, :] = numpy.array([3, 4, 2, 1])
|
| 882 |
+
self.P[1, :] = numpy.array([4, 8, 6, 2])
|
| 883 |
+
self.P[2, :] = numpy.array([8, 7, 5, 6])
|
| 884 |
+
self.P[3, :] = numpy.array([7, 3, 1, 5])
|
| 885 |
+
self.P[4, :] = numpy.array([2, 6, 5, 1])
|
| 886 |
+
self.P[5, :] = numpy.array([8, 4, 3, 7])
|
| 887 |
+
# Define triangles for plotting
|
| 888 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 889 |
+
iT = 0
|
| 890 |
+
for iTr in range(self.nf):
|
| 891 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 892 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 893 |
+
iT += 2
|
| 894 |
+
|
| 895 |
+
def translate(self, xT, yT, zT):
|
| 896 |
+
self.X += xT
|
| 897 |
+
self.Y += yT
|
| 898 |
+
self.Z += zT
|
| 899 |
+
|
| 900 |
+
def rotate(self, a1, a2, theta):
|
| 901 |
+
R = numpy.zeros([3, 3])
|
| 902 |
+
# Normal vector through origin
|
| 903 |
+
u = a2[0] - a1[0]
|
| 904 |
+
v = a2[1] - a1[1]
|
| 905 |
+
w = a2[2] - a1[2]
|
| 906 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 907 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 908 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 909 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 910 |
+
self.X -= a1[0]
|
| 911 |
+
self.Y -= a1[1]
|
| 912 |
+
self.Z -= a1[2]
|
| 913 |
+
|
| 914 |
+
# Rotation matrix
|
| 915 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 916 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 917 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 918 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 919 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 920 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 921 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 922 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 923 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 924 |
+
|
| 925 |
+
for iP in range(self.np):
|
| 926 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 927 |
+
p2 = numpy.dot(R, p1)
|
| 928 |
+
self.X[iP] = p2[0]
|
| 929 |
+
self.Y[iP] = p2[1]
|
| 930 |
+
self.Z[iP] = p2[2]
|
| 931 |
+
|
| 932 |
+
# Translate back to original position
|
| 933 |
+
|
| 934 |
+
self.X += a1[0]
|
| 935 |
+
self.Y += a1[1]
|
| 936 |
+
self.Z += a1[2]
|
| 937 |
+
|
| 938 |
+
def makeCoin(self):
|
| 939 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 940 |
+
for iF in range(self.nf):
|
| 941 |
+
for iC in range(4):
|
| 942 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 943 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 944 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 945 |
+
return coin
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
class torus:
|
| 952 |
+
def __init__(self, diamOut, diamIn, cCor):
|
| 953 |
+
self.diamOut = diamOut
|
| 954 |
+
self.diamIn = diamIn
|
| 955 |
+
self.xC = cCor[0]
|
| 956 |
+
self.yC = cCor[1]
|
| 957 |
+
self.zC = cCor[2]
|
| 958 |
+
self.name = 'torus'
|
| 959 |
+
self.panelize()
|
| 960 |
+
self.translate(self.xC, self.yC, self.zC)
|
| 961 |
+
|
| 962 |
+
def panelize(self):
|
| 963 |
+
Ntheta = 18
|
| 964 |
+
Nphi = 18
|
| 965 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
| 966 |
+
phi = [xx * 2 * numpy.pi / (Nphi - 1) for xx in range(Nphi)]
|
| 967 |
+
self.nf = 0
|
| 968 |
+
self.np = 0
|
| 969 |
+
self.X = []
|
| 970 |
+
self.Y = []
|
| 971 |
+
self.Z = []
|
| 972 |
+
R = self.diamOut / 2.0
|
| 973 |
+
r = self.diamIn / 2.0
|
| 974 |
+
|
| 975 |
+
for iT in range(Ntheta):
|
| 976 |
+
for iP in range(Nphi):
|
| 977 |
+
self.X.append((R + r * numpy.cos(theta[iT])) * numpy.cos(phi[iP]))
|
| 978 |
+
self.Y.append((R + r * numpy.cos(theta[iT])) * numpy.sin(phi[iP]))
|
| 979 |
+
self.Z.append(r * numpy.sin(theta[iT]))
|
| 980 |
+
self.np += 1
|
| 981 |
+
|
| 982 |
+
self.nf = (Ntheta - 1) * (Nphi - 1)
|
| 983 |
+
self.P = numpy.zeros([self.nf, 4], dtype=int)
|
| 984 |
+
iPan = 0
|
| 985 |
+
for iT in range(Ntheta - 1):
|
| 986 |
+
for iP in range(Nphi - 1):
|
| 987 |
+
self.P[iPan, 0] = iP + iT * Nphi + 1
|
| 988 |
+
self.P[iPan, 1] = iP + 1 + iT * Nphi + 1
|
| 989 |
+
self.P[iPan, 2] = iP + 1 + Ntheta + iT * Nphi + 1
|
| 990 |
+
self.P[iPan, 3] = iP + Ntheta + iT * Nphi + 1
|
| 991 |
+
iPan += 1
|
| 992 |
+
|
| 993 |
+
self.X = numpy.array(self.X)
|
| 994 |
+
self.Y = numpy.array(self.Y)
|
| 995 |
+
self.Z = numpy.array(self.Z)
|
| 996 |
+
# Define triangles for plotting
|
| 997 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
| 998 |
+
iT = 0
|
| 999 |
+
for iTr in range(self.nf):
|
| 1000 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
| 1001 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
| 1002 |
+
iT += 2
|
| 1003 |
+
|
| 1004 |
+
def translate(self, xT, yT, zT):
|
| 1005 |
+
self.X += xT
|
| 1006 |
+
self.Y += yT
|
| 1007 |
+
self.Z += zT
|
| 1008 |
+
|
| 1009 |
+
def rotate(self, a1, a2, theta):
|
| 1010 |
+
R = numpy.zeros([3, 3])
|
| 1011 |
+
# Normal vector through origin
|
| 1012 |
+
u = a2[0] - a1[0]
|
| 1013 |
+
v = a2[1] - a1[1]
|
| 1014 |
+
w = a2[2] - a1[2]
|
| 1015 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 1016 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 1017 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
| 1018 |
+
# Translate mesh so that rotation axis starts from the origin
|
| 1019 |
+
self.X -= a1[0]
|
| 1020 |
+
self.Y -= a1[1]
|
| 1021 |
+
self.Z -= a1[2]
|
| 1022 |
+
|
| 1023 |
+
# Rotation matrix
|
| 1024 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
| 1025 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
| 1026 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
| 1027 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
| 1028 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
| 1029 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
| 1030 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
| 1031 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
| 1032 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
| 1033 |
+
|
| 1034 |
+
for iP in range(self.np):
|
| 1035 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
| 1036 |
+
p2 = numpy.dot(R, p1)
|
| 1037 |
+
self.X[iP] = p2[0]
|
| 1038 |
+
self.Y[iP] = p2[1]
|
| 1039 |
+
self.Z[iP] = p2[2]
|
| 1040 |
+
|
| 1041 |
+
# Translate back to original position
|
| 1042 |
+
|
| 1043 |
+
self.X += a1[0]
|
| 1044 |
+
self.Y += a1[1]
|
| 1045 |
+
self.Z += a1[2]
|
| 1046 |
+
|
| 1047 |
+
def makeCoin(self):
|
| 1048 |
+
coin = numpy.zeros((3, 4, self.nf))
|
| 1049 |
+
for iF in range(self.nf):
|
| 1050 |
+
for iC in range(4):
|
| 1051 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
| 1052 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
| 1053 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
| 1054 |
+
return coin
|
| 1055 |
+
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
def make_voxels(shape, length, height, width, diameter):
|
| 1059 |
+
pos = [0, 0, 0]
|
| 1060 |
+
if shape == "box":
|
| 1061 |
+
mesh = box(length, width, height, pos)
|
| 1062 |
+
elif shape == "cone":
|
| 1063 |
+
mesh = cone(diameter, height, pos)
|
| 1064 |
+
elif shape == "cylinder":
|
| 1065 |
+
mesh = cylinder(diameter, height, pos)
|
| 1066 |
+
elif shape == "sphere":
|
| 1067 |
+
mesh = sphere(diameter, pos)
|
| 1068 |
+
elif shape == "wedge":
|
| 1069 |
+
mesh = wedge(length, width, height, pos)
|
| 1070 |
+
|
| 1071 |
+
hull_points = numpy.array([mesh.X.tolist(), mesh.Y.tolist(), mesh.Z.tolist()]).T
|
| 1072 |
+
|
| 1073 |
+
# Set up test points
|
| 1074 |
+
G = 32
|
| 1075 |
+
ex = 5 - 5 / G
|
| 1076 |
+
x, y, z = numpy.meshgrid(numpy.linspace(-ex, ex, G),
|
| 1077 |
+
numpy.linspace(-ex, ex, G),
|
| 1078 |
+
numpy.linspace(-(9.5 - 5 / G), 0.5 - 5 / G, G))
|
| 1079 |
+
test_points = numpy.vstack((x.ravel(), y.ravel(), z.ravel())).T
|
| 1080 |
+
|
| 1081 |
+
hull = scipy.spatial.Delaunay(hull_points)
|
| 1082 |
+
within = hull.find_simplex(test_points) >= 0
|
| 1083 |
+
|
| 1084 |
+
return plotly_fig(within*1.0)
|
| 1085 |
+
|
| 1086 |
# This function loads a fuckton of data
|
| 1087 |
def load_data():
|
| 1088 |
# Open all the files we downloaded at the beginning and take out hte good bits
|
|
|
|
| 1106 |
|
| 1107 |
# Return good bits to user
|
| 1108 |
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
|
|
|
|
|
|
|
|
|
|
| 1109 |
|
| 1110 |
curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()
|
| 1111 |
|