coralLight's picture
add inference
012e1d0
import torch
import torch.nn.functional as F
import math
import numpy as np
import os
class NoiseScheduleVP:
def __init__(
self,
schedule="discrete",
betas=None,
alphas_cumprod=None,
continuous_beta_0=0.1,
continuous_beta_1=20.0,
):
"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
***
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
log_alpha_t = self.marginal_log_mean_coeff(t)
sigma_t = self.marginal_std(t)
lambda_t = self.marginal_lambda(t)
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
t = self.inverse_lambda(lambda_t)
===============================================================
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
1. For discrete-time DPMs:
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
t_i = (i + 1) / N
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
Args:
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
**Important**: Please pay special attention for the args for `alphas_cumprod`:
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
alpha_{t_n} = \sqrt{\hat{alpha_n}},
and
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
2. For continuous-time DPMs:
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
schedule are the default settings in DDPM and improved-DDPM:
Args:
beta_min: A `float` number. The smallest beta for the linear schedule.
beta_max: A `float` number. The largest beta for the linear schedule.
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
T: A `float` number. The ending time of the forward process.
===============================================================
Args:
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
'linear' or 'cosine' for continuous-time DPMs.
Returns:
A wrapper object of the forward SDE (VP type).
===============================================================
Example:
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', betas=betas)
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
# For continuous-time DPMs (VPSDE), linear schedule:
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
"""
if schedule not in ["discrete", "linear", "cosine"]:
raise ValueError(
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
schedule
)
)
self.alphas_cumprod = alphas_cumprod
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
self.log_sigmas = self.sigmas.log()
self.schedule = schedule
if schedule == "discrete":
if betas is not None:
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
else:
assert alphas_cumprod is not None
log_alphas = 0.5 * torch.log(alphas_cumprod)
self.total_N = len(log_alphas)
self.T = 1.0
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1))
self.log_alpha_array = log_alphas.reshape(
(
1,
-1,
)
)
else:
self.total_N = 1000
self.beta_0 = continuous_beta_0
self.beta_1 = continuous_beta_1
self.cosine_s = 0.008
self.cosine_beta_max = 999.0
self.cosine_t_max = (
math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi)
* 2.0
* (1.0 + self.cosine_s)
/ math.pi
- self.cosine_s
)
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0))
self.schedule = schedule
if schedule == "cosine":
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
self.T = 0.9946
else:
self.T = 1.0
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == "discrete":
return interpolate_fn(
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)
).reshape((-1))
elif self.schedule == "linear":
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
elif self.schedule == "cosine":
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0))
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
return log_alpha_t
def sigma_to_t(self, sigma, quantize=None):
quantize = None
log_sigma = sigma.log()
dists = log_sigma - self.log_sigmas[:, None]
if quantize:
return dists.abs().argmin(dim=0).view(sigma.shape)
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx]
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
t = (1 - w) * low_idx + w * high_idx
return t.view(sigma.shape)
def get_special_sigmas_with_timesteps(self,timesteps):
low_idx, high_idx, w = np.minimum(np.floor(timesteps),999), np.minimum(np.ceil(timesteps),999), torch.from_numpy( timesteps - np.floor(timesteps))
self.alphas_cumprod = self.alphas_cumprod.to('cpu')
alphas = (1 - w) * self.alphas_cumprod[low_idx] + w * self.alphas_cumprod[high_idx]
return ((1 - alphas) / alphas) ** 0.5
def marginal_alpha(self, t):
"""
Compute alpha_t of a given continuous-time label t in [0, T].
"""
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == "linear":
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
Delta = self.beta_0**2 + tmp
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
elif self.schedule == "discrete":
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb)
t = interpolate_fn(
log_alpha.reshape((-1, 1)),
torch.flip(self.log_alpha_array.to(lamb.device), [1]),
torch.flip(self.t_array.to(lamb.device), [1]),
)
return t.reshape((-1,))
else:
log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
t_fn = (
lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0))
* 2.0
* (1.0 + self.cosine_s)
/ math.pi
- self.cosine_s
)
t = t_fn(log_alpha)
return t
def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
condition=None,
unconditional_condition=None,
guidance_scale=1.0,
classifier_fn=None,
classifier_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A pytorch tensor. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == "discrete":
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
t_input = get_model_input_time(t_continuous)
if cond is None:
output = model(x, t_input, None, **model_kwargs)
else:
output = model(x, t_input, cond, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return -expand_dims(sigma_t, dims) * output
def cond_grad_fn(x, t_input):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
return torch.autograd.grad(log_prob.sum(), x_in)[0]
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
elif guidance_type == "classifier-free":
if guidance_scale == 1.0 or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t_continuous] * 2)
if isinstance(condition, torch.Tensor) and ( isinstance(unconditional_condition, torch.Tensor) or unconditional_condition is None ):
c_in = torch.cat([unconditional_condition, condition])
else:
c_in = [condition, unconditional_condition]
# c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn
def weighted_cumsumexp_trapezoid(a, x, b, cumsum=True):
# ∫ b*e^a dx
# Input: a,x,b: shape (N+1,...)
# Output: y: shape (N+1,...)
# y_0 = 0
# y_n = sum_{i=1}^{n} 0.5*(x_{i}-x_{i-1})*(b_{i}*e^{a_{i}}+b_{i-1}*e^{a_{i-1}}) (n from 1 to N)
assert x.shape[0] == a.shape[0] and x.ndim == a.ndim
if b is not None:
assert a.shape[0] == b.shape[0] and a.ndim == b.ndim
a_max = np.amax(a, axis=0, keepdims=True)
if b is not None:
b = np.asarray(b)
tmp = b * np.exp(a - a_max)
else:
tmp = np.exp(a - a_max)
out = 0.5 * (x[1:] - x[:-1]) * (tmp[1:] + tmp[:-1])
if not cumsum:
return np.sum(out, axis=0) * np.exp(a_max)
out = np.cumsum(out, axis=0)
out *= np.exp(a_max)
return np.concatenate([np.zeros_like(out[[0]]), out], axis=0)
def weighted_cumsumexp_trapezoid_torch(a, x, b, cumsum=True):
assert x.shape[0] == a.shape[0] and x.ndim == a.ndim
if b is not None:
assert a.shape[0] == b.shape[0] and a.ndim == b.ndim
a_max = torch.amax(a, dim=0, keepdims=True)
if b is not None:
tmp = b * torch.exp(a - a_max)
else:
tmp = torch.exp(a - a_max)
out = 0.5 * (x[1:] - x[:-1]) * (tmp[1:] + tmp[:-1])
if not cumsum:
return torch.sum(out, dim=0) * torch.exp(a_max)
out = torch.cumsum(out, dim=0)
out *= torch.exp(a_max)
return torch.concat([torch.zeros_like(out[[0]]), out], dim=0)
def index_list(lst, index):
new_lst = []
for i in index:
new_lst.append(lst[i])
return new_lst
class DPM_Solver_v3:
def __init__(
self,
statistics_dir,
noise_schedule,
steps=10,
t_start=None,
t_end=None,
skip_type="time_uniform",
degenerated=False,
device="cuda",
):
self.device = device
self.model = None
self.noise_schedule = noise_schedule
self.steps = steps
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
assert (
t_0 > 0 and t_T > 0
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
l = np.load(os.path.join(statistics_dir, "l.npz"))["l"]
sb = np.load(os.path.join(statistics_dir, "sb.npz"))
s, b = sb["s"], sb["b"]
if degenerated:
l = np.ones_like(l)
s = np.zeros_like(s)
b = np.zeros_like(b)
self.statistics_steps = l.shape[0] - 1
ts = noise_schedule.marginal_lambda(
self.get_time_steps("logSNR", t_T, t_0, self.statistics_steps, "cpu")
).numpy()[:, None, None, None]
self.ts = torch.from_numpy(ts).cuda()
self.lambda_T = self.ts[0].cpu().item()
self.lambda_0 = self.ts[-1].cpu().item()
z = np.zeros_like(l)
o = np.ones_like(l)
L = weighted_cumsumexp_trapezoid(z, ts, l)
S = weighted_cumsumexp_trapezoid(z, ts, s)
I = weighted_cumsumexp_trapezoid(L + S, ts, o)
B = weighted_cumsumexp_trapezoid(-S, ts, b)
C = weighted_cumsumexp_trapezoid(L + S, ts, B)
self.l = torch.from_numpy(l).cuda()
self.s = torch.from_numpy(s).cuda()
self.b = torch.from_numpy(b).cuda()
self.L = torch.from_numpy(L).cuda()
self.S = torch.from_numpy(S).cuda()
self.I = torch.from_numpy(I).cuda()
self.B = torch.from_numpy(B).cuda()
self.C = torch.from_numpy(C).cuda()
# precompute timesteps
if skip_type == "logSNR" or skip_type == "time_uniform" or skip_type == "time_quadratic" or skip_type == "customed_time_karras":
self.timesteps = self.get_time_steps(skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
self.indexes = self.convert_to_indexes(self.timesteps)
self.timesteps = self.convert_to_timesteps(self.indexes, device)
elif skip_type == "edm":
self.indexes, self.timesteps = self.get_timesteps_edm(N=steps, device=device)
self.timesteps = self.convert_to_timesteps(self.indexes, device)
else:
raise ValueError(f"Unsupported timestep strategy {skip_type}")
print("Indexes", self.indexes)
print("Time steps", self.timesteps)
print("LogSNR steps", self.noise_schedule.marginal_lambda(self.timesteps))
# store high-order exponential coefficients (lazy)
self.exp_coeffs = {}
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def convert_to_indexes(self, timesteps):
logSNR_steps = self.noise_schedule.marginal_lambda(timesteps)
indexes = list(
(self.statistics_steps * (logSNR_steps - self.lambda_T) / (self.lambda_0 - self.lambda_T))
.round()
.cpu()
.numpy()
.astype(np.int64)
)
return indexes
def convert_to_timesteps(self, indexes, device):
logSNR_steps = (
self.lambda_T + (self.lambda_0 - self.lambda_T) * torch.Tensor(indexes).to(device) / self.statistics_steps
)
return self.noise_schedule.inverse_lambda(logSNR_steps)
def append_zero(self, x):
return torch.cat([x, x.new_zeros([1])])
def get_sigmas_karras(self, n, sigma_min, sigma_max, rho=7., device='cpu', need_append_zero=True):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return self.append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device)
def sigma_to_t(self, sigma, quantize=None):
quantize = False
log_sigma = sigma.log()
dists = log_sigma - self.noise_schedule.log_sigmas[:, None]
if quantize:
return dists.abs().argmin(dim=0).view(sigma.shape)
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.noise_schedule.log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low, high = self.noise_schedule.log_sigmas[low_idx], self.noise_schedule.log_sigmas[high_idx]
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
t = (1 - w) * low_idx + w * high_idx
return t.view(sigma.shape)
def get_time_steps(self, skip_type, t_T, t_0, N, device):
"""Compute the intermediate time steps for sampling.
Args:
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
N: A `int`. The total number of the spacing of the time steps.
device: A torch device.
Returns:
A pytorch tensor of the time steps, with the shape (N + 1,).
"""
if skip_type == "logSNR":
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == "time_uniform":
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == "time_quadratic":
t_order = 2
t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device)
return t
elif skip_type == "customed_time_karras":
sigma_T = self.noise_schedule.sigmas[-1].cpu().item()
sigma_0 = self.noise_schedule.sigmas[0].cpu().item()
if N == 8:
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T, rho=7.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[9])
ct = self.get_sigmas_karras(9, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
elif N == 5:
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(6, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
elif N == 6:
sigmas = self.sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
none_k_ct = torch.from_numpy(np.array(real_ct)).to(device)
return none_k_ct#real_ct
else:
raise ValueError(
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)
)
def get_timesteps_edm(self, N, device):
"""Constructs the noise schedule of Karras et al. (2022)."""
rho = 7.0 # 7.0 is the value used in the paper
sigma_min: float = np.exp(-self.lambda_0)
sigma_max: float = np.exp(-self.lambda_T)
ramp = np.linspace(0, 1, N + 1)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
lambdas = torch.Tensor(-np.log(sigmas)).to(device)
timesteps = self.noise_schedule.inverse_lambda(lambdas)
indexes = list(
(self.statistics_steps * (lambdas - self.lambda_T) / (self.lambda_0 - self.lambda_T))
.round()
.cpu()
.numpy()
.astype(np.int64)
)
return indexes, timesteps
def get_g(self, f_t, i_s, i_t):
return torch.exp(self.S[i_s] - self.S[i_t]) * f_t - torch.exp(self.S[i_s]) * (self.B[i_t] - self.B[i_s])
def compute_exponential_coefficients_high_order(self, i_s, i_t, order=2):
key = (i_s, i_t, order)
if key in self.exp_coeffs.keys():
coeffs = self.exp_coeffs[key]
else:
n = order - 1
a = self.L[i_s : i_t + 1] + self.S[i_s : i_t + 1] - self.L[i_s] - self.S[i_s]
x = self.ts[i_s : i_t + 1]
b = (self.ts[i_s : i_t + 1] - self.ts[i_s]) ** n / math.factorial(n)
coeffs = weighted_cumsumexp_trapezoid_torch(a, x, b, cumsum=False)
self.exp_coeffs[key] = coeffs
return coeffs
def compute_high_order_derivatives(self, n, lambda_0n, g_0n, pseudo=False):
# return g^(1), ..., g^(n)
if pseudo:
D = [[] for _ in range(n + 1)]
D[0] = g_0n
for i in range(1, n + 1):
for j in range(n - i + 1):
D[i].append((D[i - 1][j] - D[i - 1][j + 1]) / (lambda_0n[j] - lambda_0n[i + j]))
return [D[i][0] * math.factorial(i) for i in range(1, n + 1)]
else:
R = []
for i in range(1, n + 1):
R.append(torch.pow(lambda_0n[1:] - lambda_0n[0], i))
R = torch.stack(R).t()
B = (torch.stack(g_0n[1:]) - g_0n[0]).reshape(n, -1)
shape = g_0n[0].shape
solution = torch.linalg.inv(R) @ B
solution = solution.reshape([n] + list(shape))
return [solution[i - 1] * math.factorial(i) for i in range(1, n + 1)]
def multistep_predictor_update(self, x_lst, eps_lst, time_lst, index_lst, t, i_t, order=1, pseudo=False):
# x_lst: [..., x_s]
# eps_lst: [..., eps_s]
# time_lst: [..., time_s]
ns = self.noise_schedule
n = order - 1
indexes = [-i - 1 for i in range(n + 1)]
x_0n = index_list(x_lst, indexes)
eps_0n = index_list(eps_lst, indexes)
time_0n = torch.FloatTensor(index_list(time_lst, indexes)).cuda()
index_0n = index_list(index_lst, indexes)
lambda_0n = ns.marginal_lambda(time_0n)
alpha_0n = ns.marginal_alpha(time_0n)
sigma_0n = ns.marginal_std(time_0n)
alpha_s, alpha_t = alpha_0n[0], ns.marginal_alpha(t)
i_s = index_0n[0]
x_s = x_0n[0]
g_0n = []
for i in range(n + 1):
f_i = (sigma_0n[i] * eps_0n[i] - self.l[index_0n[i]] * x_0n[i]) / alpha_0n[i]
g_i = self.get_g(f_i, index_0n[0], index_0n[i])
g_0n.append(g_i)
g_0 = g_0n[0]
x_t = (
alpha_t / alpha_s * torch.exp(self.L[i_s] - self.L[i_t]) * x_s
- alpha_t * torch.exp(-self.L[i_t] - self.S[i_s]) * (self.I[i_t] - self.I[i_s]) * g_0
- alpha_t
* torch.exp(-self.L[i_t])
* (self.C[i_t] - self.C[i_s] - self.B[i_s] * (self.I[i_t] - self.I[i_s]))
)
if order > 1:
g_d = self.compute_high_order_derivatives(n, lambda_0n, g_0n, pseudo=pseudo)
for i in range(order - 1):
x_t = (
x_t
- alpha_t
* torch.exp(self.L[i_s] - self.L[i_t])
* self.compute_exponential_coefficients_high_order(i_s, i_t, order=i + 2)
* g_d[i]
)
return x_t
def multistep_corrector_update(self, x_lst, eps_lst, time_lst, index_lst, order=1, pseudo=False):
# x_lst: [..., x_s, x_t]
# eps_lst: [..., eps_s, eps_t]
# lambda_lst: [..., lambda_s, lambda_t]
ns = self.noise_schedule
n = order - 1
indexes = [-i - 1 for i in range(n + 1)]
indexes[0] = -2
indexes[1] = -1
x_0n = index_list(x_lst, indexes)
eps_0n = index_list(eps_lst, indexes)
time_0n = torch.FloatTensor(index_list(time_lst, indexes)).cuda()
index_0n = index_list(index_lst, indexes)
lambda_0n = ns.marginal_lambda(time_0n)
alpha_0n = ns.marginal_alpha(time_0n)
sigma_0n = ns.marginal_std(time_0n)
alpha_s, alpha_t = alpha_0n[0], alpha_0n[1]
i_s, i_t = index_0n[0], index_0n[1]
x_s = x_0n[0]
g_0n = []
for i in range(n + 1):
f_i = (sigma_0n[i] * eps_0n[i] - self.l[index_0n[i]] * x_0n[i]) / alpha_0n[i]
g_i = self.get_g(f_i, index_0n[0], index_0n[i])
g_0n.append(g_i)
g_0 = g_0n[0]
x_t_new = (
alpha_t / alpha_s * torch.exp(self.L[i_s] - self.L[i_t]) * x_s
- alpha_t * torch.exp(-self.L[i_t] - self.S[i_s]) * (self.I[i_t] - self.I[i_s]) * g_0
- alpha_t
* torch.exp(-self.L[i_t])
* (self.C[i_t] - self.C[i_s] - self.B[i_s] * (self.I[i_t] - self.I[i_s]))
)
if order > 1:
g_d = self.compute_high_order_derivatives(n, lambda_0n, g_0n, pseudo=pseudo)
for i in range(order - 1):
x_t_new = (
x_t_new
- alpha_t
* torch.exp(self.L[i_s] - self.L[i_t])
* self.compute_exponential_coefficients_high_order(i_s, i_t, order=i + 2)
* g_d[i]
)
return x_t_new
def sample(
self,
x,
model_fn,
order,
p_pseudo,
use_corrector,
c_pseudo,
lower_order_final,
start_free_u_step=None,
free_u_apply_callback=None,
free_u_stop_callback=None,
half=False,
return_intermediate=False,
):
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
steps = self.steps
cached_x = []
cached_model_output = []
cached_time = []
cached_index = []
indexes, timesteps = self.indexes, self.timesteps
step_p_order = 0
if free_u_stop_callback is not None:
free_u_stop_callback()
for step in range(1, steps + 1):
if start_free_u_step is not None and step == start_free_u_step and free_u_apply_callback is not None:
free_u_apply_callback()
cached_x.append(x)
cached_model_output.append(self.noise_prediction_fn(x, timesteps[step - 1]))
cached_time.append(timesteps[step - 1])
cached_index.append(indexes[step - 1])
if use_corrector and (timesteps[step - 1] > 0.5 or not half):
step_c_order = step_p_order + c_pseudo
if step_c_order > 1:
x_new = self.multistep_corrector_update(
cached_x, cached_model_output, cached_time, cached_index, order=step_c_order, pseudo=c_pseudo
)
sigma_t = self.noise_schedule.marginal_std(cached_time[-1])
l_t = self.l[cached_index[-1]]
N_old = sigma_t * cached_model_output[-1] - l_t * cached_x[-1]
cached_x[-1] = x_new
cached_model_output[-1] = (N_old + l_t * cached_x[-1]) / sigma_t
if step < order:
step_p_order = step
else:
step_p_order = order
if lower_order_final:
step_p_order = min(step_p_order, steps + 1 - step)
t = timesteps[step]
i_t = indexes[step]
x = self.multistep_predictor_update(
cached_x, cached_model_output, cached_time, cached_index, t, i_t, order=step_p_order, pseudo=p_pseudo
)
if return_intermediate:
return x, cached_x
else:
return x
#############################################################
# other utility functions
#############################################################
def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
return cand
def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,) * (dims - 1)]