import torch import torch.nn.functional as F import math import numpy as np import os class NoiseScheduleVP: def __init__( self, schedule="discrete", betas=None, alphas_cumprod=None, continuous_beta_0=0.1, continuous_beta_1=20.0, ): """Create a wrapper class for the forward SDE (VP type). *** Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. *** The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: log_alpha_t = self.marginal_log_mean_coeff(t) sigma_t = self.marginal_std(t) lambda_t = self.marginal_lambda(t) Moreover, as lambda(t) is an invertible function, we also support its inverse function: t = self.inverse_lambda(lambda_t) =============================================================== We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). 1. For discrete-time DPMs: For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: t_i = (i + 1) / N e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. Args: betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. **Important**: Please pay special attention for the args for `alphas_cumprod`: The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have alpha_{t_n} = \sqrt{\hat{alpha_n}}, and log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). 2. For continuous-time DPMs: We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise schedule are the default settings in DDPM and improved-DDPM: Args: beta_min: A `float` number. The smallest beta for the linear schedule. beta_max: A `float` number. The largest beta for the linear schedule. cosine_s: A `float` number. The hyperparameter in the cosine schedule. cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. T: A `float` number. The ending time of the forward process. =============================================================== Args: schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, 'linear' or 'cosine' for continuous-time DPMs. Returns: A wrapper object of the forward SDE (VP type). =============================================================== Example: # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): >>> ns = NoiseScheduleVP('discrete', betas=betas) # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) # For continuous-time DPMs (VPSDE), linear schedule: >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) """ if schedule not in ["discrete", "linear", "cosine"]: raise ValueError( "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( schedule ) ) self.alphas_cumprod = alphas_cumprod self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 self.log_sigmas = self.sigmas.log() self.schedule = schedule if schedule == "discrete": if betas is not None: log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) else: assert alphas_cumprod is not None log_alphas = 0.5 * torch.log(alphas_cumprod) self.total_N = len(log_alphas) self.T = 1.0 self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)) self.log_alpha_array = log_alphas.reshape( ( 1, -1, ) ) else: self.total_N = 1000 self.beta_0 = continuous_beta_0 self.beta_1 = continuous_beta_1 self.cosine_s = 0.008 self.cosine_beta_max = 999.0 self.cosine_t_max = ( math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s ) self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) self.schedule = schedule if schedule == "cosine": # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. self.T = 0.9946 else: self.T = 1.0 def marginal_log_mean_coeff(self, t): """ Compute log(alpha_t) of a given continuous-time label t in [0, T]. """ if self.schedule == "discrete": return interpolate_fn( t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) ).reshape((-1)) elif self.schedule == "linear": return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 elif self.schedule == "cosine": log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 return log_alpha_t def sigma_to_t(self, sigma, quantize=None): quantize = None log_sigma = sigma.log() dists = log_sigma - self.log_sigmas[:, None] if quantize: return dists.abs().argmin(dim=0).view(sigma.shape) low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx] w = (low - log_sigma) / (low - high) w = w.clamp(0, 1) t = (1 - w) * low_idx + w * high_idx return t.view(sigma.shape) def get_special_sigmas_with_timesteps(self,timesteps): low_idx, high_idx, w = np.minimum(np.floor(timesteps),999), np.minimum(np.ceil(timesteps),999), torch.from_numpy( timesteps - np.floor(timesteps)) self.alphas_cumprod = self.alphas_cumprod.to('cpu') alphas = (1 - w) * self.alphas_cumprod[low_idx] + w * self.alphas_cumprod[high_idx] return ((1 - alphas) / alphas) ** 0.5 def marginal_alpha(self, t): """ Compute alpha_t of a given continuous-time label t in [0, T]. """ return torch.exp(self.marginal_log_mean_coeff(t)) def marginal_std(self, t): """ Compute sigma_t of a given continuous-time label t in [0, T]. """ return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) def marginal_lambda(self, t): """ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. """ log_mean_coeff = self.marginal_log_mean_coeff(t) log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) return log_mean_coeff - log_std def inverse_lambda(self, lamb): """ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. """ if self.schedule == "linear": tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) Delta = self.beta_0**2 + tmp return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) elif self.schedule == "discrete": log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) t = interpolate_fn( log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]), ) return t.reshape((-1,)) else: log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) t_fn = ( lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s ) t = t_fn(log_alpha) return t def model_wrapper( model, noise_schedule, model_type="noise", model_kwargs={}, guidance_type="uncond", condition=None, unconditional_condition=None, guidance_scale=1.0, classifier_fn=None, classifier_kwargs={}, ): """Create a wrapper function for the noise prediction model. DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. We support four types of the diffusion model by setting `model_type`: 1. "noise": noise prediction model. (Trained by predicting noise). 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). 3. "v": velocity prediction model. (Trained by predicting the velocity). The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." arXiv preprint arXiv:2202.00512 (2022). [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." arXiv preprint arXiv:2210.02303 (2022). 4. "score": marginal score function. (Trained by denoising score matching). Note that the score function and the noise prediction model follows a simple relationship: ``` noise(x_t, t) = -sigma_t * score(x_t, t) ``` We support three types of guided sampling by DPMs by setting `guidance_type`: 1. "uncond": unconditional sampling by DPMs. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise | x_start | v | score `` 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise | x_start | v | score `` The input `classifier_fn` has the following format: `` classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) `` [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. The input `model` has the following format: `` model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score `` And if cond == `unconditional_condition`, the model output is the unconditional DPM output. [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." arXiv preprint arXiv:2207.12598 (2022). The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) or continuous-time labels (i.e. epsilon to T). We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: `` def model_fn(x, t_continuous) -> noise: t_input = get_model_input_time(t_continuous) return noise_pred(model, x, t_input, **model_kwargs) `` where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. =============================================================== Args: model: A diffusion model with the corresponding format described above. noise_schedule: A noise schedule object, such as NoiseScheduleVP. model_type: A `str`. The parameterization type of the diffusion model. "noise" or "x_start" or "v" or "score". model_kwargs: A `dict`. A dict for the other inputs of the model function. guidance_type: A `str`. The type of the guidance for sampling. "uncond" or "classifier" or "classifier-free". condition: A pytorch tensor. The condition for the guided sampling. Only used for "classifier" or "classifier-free" guidance type. unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. Only used for "classifier-free" guidance type. guidance_scale: A `float`. The scale for the guided sampling. classifier_fn: A classifier function. Only used for the classifier guidance. classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. Returns: A noise prediction model that accepts the noised data and the continuous time as the inputs. """ def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. For continuous-time DPMs, we just use `t_continuous`. """ if noise_schedule.schedule == "discrete": return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 else: return t_continuous def noise_pred_fn(x, t_continuous, cond=None): if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) t_input = get_model_input_time(t_continuous) if cond is None: output = model(x, t_input, None, **model_kwargs) else: output = model(x, t_input, cond, **model_kwargs) if model_type == "noise": return output elif model_type == "x_start": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) elif model_type == "v": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x elif model_type == "score": sigma_t = noise_schedule.marginal_std(t_continuous) dims = x.dim() return -expand_dims(sigma_t, dims) * output def cond_grad_fn(x, t_input): """ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). """ with torch.enable_grad(): x_in = x.detach().requires_grad_(True) log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) return torch.autograd.grad(log_prob.sum(), x_in)[0] def model_fn(x, t_continuous): """ The noise predicition model function that is used for DPM-Solver. """ if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) if guidance_type == "uncond": return noise_pred_fn(x, t_continuous) elif guidance_type == "classifier": assert classifier_fn is not None t_input = get_model_input_time(t_continuous) cond_grad = cond_grad_fn(x, t_input) sigma_t = noise_schedule.marginal_std(t_continuous) noise = noise_pred_fn(x, t_continuous) return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad elif guidance_type == "classifier-free": if guidance_scale == 1.0 or unconditional_condition is None: return noise_pred_fn(x, t_continuous, cond=condition) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) if isinstance(condition, torch.Tensor) and ( isinstance(unconditional_condition, torch.Tensor) or unconditional_condition is None ): c_in = torch.cat([unconditional_condition, condition]) else: c_in = [condition, unconditional_condition] # c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) return noise_uncond + guidance_scale * (noise - noise_uncond) assert model_type in ["noise", "x_start", "v"] assert guidance_type in ["uncond", "classifier", "classifier-free"] return model_fn def weighted_cumsumexp_trapezoid(a, x, b, cumsum=True): # ∫ b*e^a dx # Input: a,x,b: shape (N+1,...) # Output: y: shape (N+1,...) # y_0 = 0 # y_n = sum_{i=1}^{n} 0.5*(x_{i}-x_{i-1})*(b_{i}*e^{a_{i}}+b_{i-1}*e^{a_{i-1}}) (n from 1 to N) assert x.shape[0] == a.shape[0] and x.ndim == a.ndim if b is not None: assert a.shape[0] == b.shape[0] and a.ndim == b.ndim a_max = np.amax(a, axis=0, keepdims=True) if b is not None: b = np.asarray(b) tmp = b * np.exp(a - a_max) else: tmp = np.exp(a - a_max) out = 0.5 * (x[1:] - x[:-1]) * (tmp[1:] + tmp[:-1]) if not cumsum: return np.sum(out, axis=0) * np.exp(a_max) out = np.cumsum(out, axis=0) out *= np.exp(a_max) return np.concatenate([np.zeros_like(out[[0]]), out], axis=0) def weighted_cumsumexp_trapezoid_torch(a, x, b, cumsum=True): assert x.shape[0] == a.shape[0] and x.ndim == a.ndim if b is not None: assert a.shape[0] == b.shape[0] and a.ndim == b.ndim a_max = torch.amax(a, dim=0, keepdims=True) if b is not None: tmp = b * torch.exp(a - a_max) else: tmp = torch.exp(a - a_max) out = 0.5 * (x[1:] - x[:-1]) * (tmp[1:] + tmp[:-1]) if not cumsum: return torch.sum(out, dim=0) * torch.exp(a_max) out = torch.cumsum(out, dim=0) out *= torch.exp(a_max) return torch.concat([torch.zeros_like(out[[0]]), out], dim=0) def index_list(lst, index): new_lst = [] for i in index: new_lst.append(lst[i]) return new_lst class DPM_Solver_v3: def __init__( self, statistics_dir, noise_schedule, steps=10, t_start=None, t_end=None, skip_type="time_uniform", degenerated=False, device="cuda", ): self.device = device self.model = None self.noise_schedule = noise_schedule self.steps = steps t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end t_T = self.noise_schedule.T if t_start is None else t_start assert ( t_0 > 0 and t_T > 0 ), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" l = np.load(os.path.join(statistics_dir, "l.npz"))["l"] sb = np.load(os.path.join(statistics_dir, "sb.npz")) s, b = sb["s"], sb["b"] if degenerated: l = np.ones_like(l) s = np.zeros_like(s) b = np.zeros_like(b) self.statistics_steps = l.shape[0] - 1 ts = noise_schedule.marginal_lambda( self.get_time_steps("logSNR", t_T, t_0, self.statistics_steps, "cpu") ).numpy()[:, None, None, None] self.ts = torch.from_numpy(ts).cuda() self.lambda_T = self.ts[0].cpu().item() self.lambda_0 = self.ts[-1].cpu().item() z = np.zeros_like(l) o = np.ones_like(l) L = weighted_cumsumexp_trapezoid(z, ts, l) S = weighted_cumsumexp_trapezoid(z, ts, s) I = weighted_cumsumexp_trapezoid(L + S, ts, o) B = weighted_cumsumexp_trapezoid(-S, ts, b) C = weighted_cumsumexp_trapezoid(L + S, ts, B) self.l = torch.from_numpy(l).cuda() self.s = torch.from_numpy(s).cuda() self.b = torch.from_numpy(b).cuda() self.L = torch.from_numpy(L).cuda() self.S = torch.from_numpy(S).cuda() self.I = torch.from_numpy(I).cuda() self.B = torch.from_numpy(B).cuda() self.C = torch.from_numpy(C).cuda() # precompute timesteps if skip_type == "logSNR" or skip_type == "time_uniform" or skip_type == "time_quadratic" or skip_type == "customed_time_karras": self.timesteps = self.get_time_steps(skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) self.indexes = self.convert_to_indexes(self.timesteps) self.timesteps = self.convert_to_timesteps(self.indexes, device) elif skip_type == "edm": self.indexes, self.timesteps = self.get_timesteps_edm(N=steps, device=device) self.timesteps = self.convert_to_timesteps(self.indexes, device) else: raise ValueError(f"Unsupported timestep strategy {skip_type}") print("Indexes", self.indexes) print("Time steps", self.timesteps) print("LogSNR steps", self.noise_schedule.marginal_lambda(self.timesteps)) # store high-order exponential coefficients (lazy) self.exp_coeffs = {} def noise_prediction_fn(self, x, t): """ Return the noise prediction model. """ return self.model(x, t) def convert_to_indexes(self, timesteps): logSNR_steps = self.noise_schedule.marginal_lambda(timesteps) indexes = list( (self.statistics_steps * (logSNR_steps - self.lambda_T) / (self.lambda_0 - self.lambda_T)) .round() .cpu() .numpy() .astype(np.int64) ) return indexes def convert_to_timesteps(self, indexes, device): logSNR_steps = ( self.lambda_T + (self.lambda_0 - self.lambda_T) * torch.Tensor(indexes).to(device) / self.statistics_steps ) return self.noise_schedule.inverse_lambda(logSNR_steps) def append_zero(self, x): return torch.cat([x, x.new_zeros([1])]) def get_sigmas_karras(self, n, sigma_min, sigma_max, rho=7., device='cpu', need_append_zero=True): """Constructs the noise schedule of Karras et al. (2022).""" ramp = torch.linspace(0, 1, n) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return self.append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device) def sigma_to_t(self, sigma, quantize=None): quantize = False log_sigma = sigma.log() dists = log_sigma - self.noise_schedule.log_sigmas[:, None] if quantize: return dists.abs().argmin(dim=0).view(sigma.shape) low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.noise_schedule.log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low, high = self.noise_schedule.log_sigmas[low_idx], self.noise_schedule.log_sigmas[high_idx] w = (low - log_sigma) / (low - high) w = w.clamp(0, 1) t = (1 - w) * low_idx + w * high_idx return t.view(sigma.shape) def get_time_steps(self, skip_type, t_T, t_0, N, device): """Compute the intermediate time steps for sampling. Args: skip_type: A `str`. The type for the spacing of the time steps. We support three types: - 'logSNR': uniform logSNR for the time steps. - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). N: A `int`. The total number of the spacing of the time steps. device: A torch device. Returns: A pytorch tensor of the time steps, with the shape (N + 1,). """ if skip_type == "logSNR": lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) return self.noise_schedule.inverse_lambda(logSNR_steps) elif skip_type == "time_uniform": return torch.linspace(t_T, t_0, N + 1).to(device) elif skip_type == "time_quadratic": t_order = 2 t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) return t elif skip_type == "customed_time_karras": sigma_T = self.noise_schedule.sigmas[-1].cpu().item() sigma_0 = self.noise_schedule.sigmas[0].cpu().item() if N == 8: sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T, rho=7.0, device=device) ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[9]) ct = self.get_sigmas_karras(9, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy() sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device) real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct] elif N == 5: sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device) ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6]) ct = self.get_sigmas_karras(6, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy() sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device) real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct] elif N == 6: sigmas = self.sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device) ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6]) ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy() sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device) real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct] none_k_ct = torch.from_numpy(np.array(real_ct)).to(device) return none_k_ct#real_ct else: raise ValueError( "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type) ) def get_timesteps_edm(self, N, device): """Constructs the noise schedule of Karras et al. (2022).""" rho = 7.0 # 7.0 is the value used in the paper sigma_min: float = np.exp(-self.lambda_0) sigma_max: float = np.exp(-self.lambda_T) ramp = np.linspace(0, 1, N + 1) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho lambdas = torch.Tensor(-np.log(sigmas)).to(device) timesteps = self.noise_schedule.inverse_lambda(lambdas) indexes = list( (self.statistics_steps * (lambdas - self.lambda_T) / (self.lambda_0 - self.lambda_T)) .round() .cpu() .numpy() .astype(np.int64) ) return indexes, timesteps def get_g(self, f_t, i_s, i_t): return torch.exp(self.S[i_s] - self.S[i_t]) * f_t - torch.exp(self.S[i_s]) * (self.B[i_t] - self.B[i_s]) def compute_exponential_coefficients_high_order(self, i_s, i_t, order=2): key = (i_s, i_t, order) if key in self.exp_coeffs.keys(): coeffs = self.exp_coeffs[key] else: n = order - 1 a = self.L[i_s : i_t + 1] + self.S[i_s : i_t + 1] - self.L[i_s] - self.S[i_s] x = self.ts[i_s : i_t + 1] b = (self.ts[i_s : i_t + 1] - self.ts[i_s]) ** n / math.factorial(n) coeffs = weighted_cumsumexp_trapezoid_torch(a, x, b, cumsum=False) self.exp_coeffs[key] = coeffs return coeffs def compute_high_order_derivatives(self, n, lambda_0n, g_0n, pseudo=False): # return g^(1), ..., g^(n) if pseudo: D = [[] for _ in range(n + 1)] D[0] = g_0n for i in range(1, n + 1): for j in range(n - i + 1): D[i].append((D[i - 1][j] - D[i - 1][j + 1]) / (lambda_0n[j] - lambda_0n[i + j])) return [D[i][0] * math.factorial(i) for i in range(1, n + 1)] else: R = [] for i in range(1, n + 1): R.append(torch.pow(lambda_0n[1:] - lambda_0n[0], i)) R = torch.stack(R).t() B = (torch.stack(g_0n[1:]) - g_0n[0]).reshape(n, -1) shape = g_0n[0].shape solution = torch.linalg.inv(R) @ B solution = solution.reshape([n] + list(shape)) return [solution[i - 1] * math.factorial(i) for i in range(1, n + 1)] def multistep_predictor_update(self, x_lst, eps_lst, time_lst, index_lst, t, i_t, order=1, pseudo=False): # x_lst: [..., x_s] # eps_lst: [..., eps_s] # time_lst: [..., time_s] ns = self.noise_schedule n = order - 1 indexes = [-i - 1 for i in range(n + 1)] x_0n = index_list(x_lst, indexes) eps_0n = index_list(eps_lst, indexes) time_0n = torch.FloatTensor(index_list(time_lst, indexes)).cuda() index_0n = index_list(index_lst, indexes) lambda_0n = ns.marginal_lambda(time_0n) alpha_0n = ns.marginal_alpha(time_0n) sigma_0n = ns.marginal_std(time_0n) alpha_s, alpha_t = alpha_0n[0], ns.marginal_alpha(t) i_s = index_0n[0] x_s = x_0n[0] g_0n = [] for i in range(n + 1): f_i = (sigma_0n[i] * eps_0n[i] - self.l[index_0n[i]] * x_0n[i]) / alpha_0n[i] g_i = self.get_g(f_i, index_0n[0], index_0n[i]) g_0n.append(g_i) g_0 = g_0n[0] x_t = ( alpha_t / alpha_s * torch.exp(self.L[i_s] - self.L[i_t]) * x_s - alpha_t * torch.exp(-self.L[i_t] - self.S[i_s]) * (self.I[i_t] - self.I[i_s]) * g_0 - alpha_t * torch.exp(-self.L[i_t]) * (self.C[i_t] - self.C[i_s] - self.B[i_s] * (self.I[i_t] - self.I[i_s])) ) if order > 1: g_d = self.compute_high_order_derivatives(n, lambda_0n, g_0n, pseudo=pseudo) for i in range(order - 1): x_t = ( x_t - alpha_t * torch.exp(self.L[i_s] - self.L[i_t]) * self.compute_exponential_coefficients_high_order(i_s, i_t, order=i + 2) * g_d[i] ) return x_t def multistep_corrector_update(self, x_lst, eps_lst, time_lst, index_lst, order=1, pseudo=False): # x_lst: [..., x_s, x_t] # eps_lst: [..., eps_s, eps_t] # lambda_lst: [..., lambda_s, lambda_t] ns = self.noise_schedule n = order - 1 indexes = [-i - 1 for i in range(n + 1)] indexes[0] = -2 indexes[1] = -1 x_0n = index_list(x_lst, indexes) eps_0n = index_list(eps_lst, indexes) time_0n = torch.FloatTensor(index_list(time_lst, indexes)).cuda() index_0n = index_list(index_lst, indexes) lambda_0n = ns.marginal_lambda(time_0n) alpha_0n = ns.marginal_alpha(time_0n) sigma_0n = ns.marginal_std(time_0n) alpha_s, alpha_t = alpha_0n[0], alpha_0n[1] i_s, i_t = index_0n[0], index_0n[1] x_s = x_0n[0] g_0n = [] for i in range(n + 1): f_i = (sigma_0n[i] * eps_0n[i] - self.l[index_0n[i]] * x_0n[i]) / alpha_0n[i] g_i = self.get_g(f_i, index_0n[0], index_0n[i]) g_0n.append(g_i) g_0 = g_0n[0] x_t_new = ( alpha_t / alpha_s * torch.exp(self.L[i_s] - self.L[i_t]) * x_s - alpha_t * torch.exp(-self.L[i_t] - self.S[i_s]) * (self.I[i_t] - self.I[i_s]) * g_0 - alpha_t * torch.exp(-self.L[i_t]) * (self.C[i_t] - self.C[i_s] - self.B[i_s] * (self.I[i_t] - self.I[i_s])) ) if order > 1: g_d = self.compute_high_order_derivatives(n, lambda_0n, g_0n, pseudo=pseudo) for i in range(order - 1): x_t_new = ( x_t_new - alpha_t * torch.exp(self.L[i_s] - self.L[i_t]) * self.compute_exponential_coefficients_high_order(i_s, i_t, order=i + 2) * g_d[i] ) return x_t_new def sample( self, x, model_fn, order, p_pseudo, use_corrector, c_pseudo, lower_order_final, start_free_u_step=None, free_u_apply_callback=None, free_u_stop_callback=None, half=False, return_intermediate=False, ): self.model = lambda x, t: model_fn(x, t.expand((x.shape[0]))) steps = self.steps cached_x = [] cached_model_output = [] cached_time = [] cached_index = [] indexes, timesteps = self.indexes, self.timesteps step_p_order = 0 if free_u_stop_callback is not None: free_u_stop_callback() for step in range(1, steps + 1): if start_free_u_step is not None and step == start_free_u_step and free_u_apply_callback is not None: free_u_apply_callback() cached_x.append(x) cached_model_output.append(self.noise_prediction_fn(x, timesteps[step - 1])) cached_time.append(timesteps[step - 1]) cached_index.append(indexes[step - 1]) if use_corrector and (timesteps[step - 1] > 0.5 or not half): step_c_order = step_p_order + c_pseudo if step_c_order > 1: x_new = self.multistep_corrector_update( cached_x, cached_model_output, cached_time, cached_index, order=step_c_order, pseudo=c_pseudo ) sigma_t = self.noise_schedule.marginal_std(cached_time[-1]) l_t = self.l[cached_index[-1]] N_old = sigma_t * cached_model_output[-1] - l_t * cached_x[-1] cached_x[-1] = x_new cached_model_output[-1] = (N_old + l_t * cached_x[-1]) / sigma_t if step < order: step_p_order = step else: step_p_order = order if lower_order_final: step_p_order = min(step_p_order, steps + 1 - step) t = timesteps[step] i_t = indexes[step] x = self.multistep_predictor_update( cached_x, cached_model_output, cached_time, cached_index, t, i_t, order=step_p_order, pseudo=p_pseudo ) if return_intermediate: return x, cached_x else: return x ############################################################# # other utility functions ############################################################# def interpolate_fn(x, xp, yp): """ A piecewise linear function y = f(x), using xp and yp as keypoints. We implement f(x) in a differentiable way (i.e. applicable for autograd). The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) Args: x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. yp: PyTorch tensor with shape [C, K]. Returns: The function values f(x), with shape [N, C]. """ N, K = x.shape[0], xp.shape[1] all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) sorted_all_x, x_indices = torch.sort(all_x, dim=2) x_idx = torch.argmin(x_indices, dim=2) cand_start_idx = x_idx - 1 start_idx = torch.where( torch.eq(x_idx, 0), torch.tensor(1, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) start_idx2 = torch.where( torch.eq(x_idx, 0), torch.tensor(0, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) return cand def expand_dims(v, dims): """ Expand the tensor `v` to the dim `dims`. Args: `v`: a PyTorch tensor with shape [N]. `dim`: a `int`. Returns: a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. """ return v[(...,) + (None,) * (dims - 1)]