Spaces:
Running
Running
Update index.html
Browse files- index.html +57 -43
index.html
CHANGED
|
@@ -85,29 +85,21 @@
|
|
| 85 |
color: #2c3e50;
|
| 86 |
border: 1px solid #ddd;
|
| 87 |
}
|
| 88 |
-
|
| 89 |
-
border: 1px solid #
|
| 90 |
-
border-radius:
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
}
|
| 94 |
-
summary {
|
| 95 |
-
font-weight: bold;
|
| 96 |
-
margin: -.5em -.5em 0;
|
| 97 |
-
padding: .5em;
|
| 98 |
-
cursor: pointer;
|
| 99 |
-
background-color: #f1f1f1;
|
| 100 |
-
}
|
| 101 |
-
details[open] {
|
| 102 |
-
padding: .5em;
|
| 103 |
}
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
}
|
| 108 |
.derivation-step {
|
| 109 |
text-align: left;
|
| 110 |
-
padding
|
|
|
|
| 111 |
}
|
| 112 |
</style>
|
| 113 |
</head>
|
|
@@ -202,35 +194,57 @@
|
|
| 202 |
臨界角 (Critical Angle):
|
| 203 |
$$ \theta_c = \sin^{-1}\left(\frac{V_1}{V_2}\right) $$
|
| 204 |
</div>
|
| 205 |
-
<p
|
| 206 |
-
<img src="1000030050.jpg" alt="折射波路徑的三段式分解">
|
| 207 |
|
| 208 |
-
<
|
| 209 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
<div class="derivation-step">
|
| 211 |
-
<
|
| 212 |
-
<p
|
| 213 |
-
<
|
| 214 |
-
<p
|
| 215 |
-
<
|
| 216 |
-
<p>$T_2 = \frac{X - 2h \tan\theta_c}{V_2}$</p>
|
| 217 |
-
<p>3. 將三者相加:</p>
|
| 218 |
-
<p>$T_t = \frac{2h}{V_1 \cos\theta_c} + \frac{X - 2h \tan\theta_c}{V_2} = \frac{2h}{V_1 \cos\theta_c} - \frac{2h \sin\theta_c}{V_2 \cos\theta_c} + \frac{X}{V_2}$</p>
|
| 219 |
-
<p>4. 提出公因式 $ \frac{2h}{V_1 \cos\theta_c} $:</p>
|
| 220 |
-
<p>$T_t = \frac{2h}{V_1 \cos\theta_c} \left(1 - \frac{V_1}{V_2}\sin\theta_c\right) + \frac{X}{V_2}$</p>
|
| 221 |
-
<p>5. 根據司乃耳定律,在臨界角時 $\frac{V_1}{V_2} = \sin\theta_c$,代入上式:</p>
|
| 222 |
-
<p>$T_t = \frac{2h}{V_1 \cos\theta_c} (1 - \sin^2\theta_c) + \frac{X}{V_2}$</p>
|
| 223 |
-
<p>6. 利用三角恆等式 $1 - \sin^2\theta_c = \cos^2\theta_c$:</p>
|
| 224 |
-
<p>$T_t = \frac{2h}{V_1 \cos\theta_c} (\cos^2\theta_c) + \frac{X}{V_2}$</p>
|
| 225 |
-
<p>7. 化簡得到最終結果:</p>
|
| 226 |
-
<p>$T_t = \frac{2h\cos\theta_c}{V_1} + \frac{X}{V_2}$</p>
|
| 227 |
</div>
|
| 228 |
-
</details>
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
<div class="formula-box">
|
| 232 |
-
|
| 233 |
-
$$
|
| 234 |
</div>
|
| 235 |
<p>這個截時 $t_i$ 的大小,就和第一層的厚度 $h$ 有關!</p>
|
| 236 |
<img src="1000030054.jpg" alt="直達波與折射波的完整走時曲線圖">
|
|
|
|
| 85 |
color: #2c3e50;
|
| 86 |
border: 1px solid #ddd;
|
| 87 |
}
|
| 88 |
+
.derivation-section {
|
| 89 |
+
border: 1px solid #3498db;
|
| 90 |
+
border-radius: 8px;
|
| 91 |
+
margin-top: 25px;
|
| 92 |
+
padding: 15px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
}
|
| 94 |
+
.derivation-section h3 {
|
| 95 |
+
color: #3498db;
|
| 96 |
+
border: none;
|
| 97 |
+
margin-top: 0;
|
| 98 |
}
|
| 99 |
.derivation-step {
|
| 100 |
text-align: left;
|
| 101 |
+
padding: 5px 0;
|
| 102 |
+
margin-bottom: 10px;
|
| 103 |
}
|
| 104 |
</style>
|
| 105 |
</head>
|
|
|
|
| 194 |
臨界角 (Critical Angle):
|
| 195 |
$$ \theta_c = \sin^{-1}\left(\frac{V_1}{V_2}\right) $$
|
| 196 |
</div>
|
| 197 |
+
<p>折射波的總傳播時間,是它在第一層走的兩段斜線路徑、加上在第二層介面水平路徑的時間總和。現在,就讓我們跟著下面的圖示與步驟,一步步推導出來吧!</p>
|
|
|
|
| 198 |
|
| 199 |
+
<div class="derivation-section">
|
| 200 |
+
<h3>公式解剖室:折射波走時推導</h3>
|
| 201 |
+
<p>我們的目標是計算出折射波從震源到接收器,總共花了多少時間 $T(X)$。請隨時對照下方的路徑分解圖。</p>
|
| 202 |
+
<img src="1000030050.jpg" alt="折射波路徑的三段式分解">
|
| 203 |
+
|
| 204 |
+
<div class="derivation-step">
|
| 205 |
+
<h4>步驟 1:將總時間分解為三段</h4>
|
| 206 |
+
<p>總時間 $T_t$ 是三段路徑時間的總和:$T_1$ (向下傳播) + $T_2$ (沿介面傳播) + $T_3$ (向上傳播)。</p>
|
| 207 |
+
<div class="formula-box">$$ T_t = T_1 + T_2 + T_3 $$</div>
|
| 208 |
+
</div>
|
| 209 |
+
|
| 210 |
+
<div class="derivation-step">
|
| 211 |
+
<h4>步驟 2:計算各段時間</h4>
|
| 212 |
+
<p>時間 = 距離 / 速度。從圖中的幾何關係,我們可以得到:</p>
|
| 213 |
+
<p><b>$T_1$ 和 $T_3$ 的時間</b>:這兩段路徑相同,長度為 $\frac{h}{\cos\theta_c}$,且都在速度為 $V_1$ 的第一層中傳播。</p>
|
| 214 |
+
<div class="formula-box">$$ T_1 = T_3 = \frac{h}{V_1 \cos\theta_c} $$</div>
|
| 215 |
+
<p><b>$T_2$ 的時間</b>:這段路徑的水平長度,是總長度 $X$ 減去 $T_1$ 和 $T_3$ 在水平方向上的投影長度 ($h \tan\theta_c$)。它在速度為 $V_2$ 的第二層中傳播。</p>
|
| 216 |
+
<div class="formula-box">$$ T_2 = \frac{X - 2h \tan\theta_c}{V_2} $$</div>
|
| 217 |
+
</div>
|
| 218 |
+
|
| 219 |
+
<div class="derivation-step">
|
| 220 |
+
<h4>步驟 3:將各段時間相加</h4>
|
| 221 |
+
<p>將上面得到的 $T_1$, $T_2$, $T_3$ 代入總時間公式中。</p>
|
| 222 |
+
<div class="formula-box">$$ T_t = \left(\frac{h}{V_1 \cos\theta_c}\right) + \left(\frac{X - 2h \tan\theta_c}{V_2}\right) + \left(\frac{h}{V_1 \cos\theta_c}\right) $$</div>
|
| 223 |
+
<p>整理一下,合併 $T_1$ 和 $T_3$,並把 $T_2$ 拆開:</p>
|
| 224 |
+
<div class="formula-box">$$ T_t = \frac{2h}{V_1 \cos\theta_c} + \frac{X}{V_2} - \frac{2h \tan\theta_c}{V_2} $$</div>
|
| 225 |
+
</div>
|
| 226 |
+
|
| 227 |
<div class="derivation-step">
|
| 228 |
+
<h4>步驟 4:代入三角函數與司乃耳定律</h4>
|
| 229 |
+
<p>我們利用 $\tan\theta_c = \frac{\sin\theta_c}{\cos\theta_c}$,並將公式重新整理,提出公因式。</p>
|
| 230 |
+
<div class="formula-box">$$ T_t = \frac{2h}{V_1 \cos\theta_c} \left(1 - \frac{V_1}{V_2}\sin\theta_c\right) + \frac{X}{V_2} $$</div>
|
| 231 |
+
<p>接著,最關鍵的一步:使用臨界角的司乃耳定律 $\sin\theta_c = \frac{V_1}{V_2}$ 代入括號中。</p>
|
| 232 |
+
<div class="formula-box">$$ T_t = \frac{2h}{V_1 \cos\theta_c} (1 - \sin^2\theta_c) + \frac{X}{V_2} $$</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
</div>
|
|
|
|
| 234 |
|
| 235 |
+
<div class="derivation-step">
|
| 236 |
+
<h4>步驟 5:最終化簡</h4>
|
| 237 |
+
<p>我們都知道三角恆等式 $1 - \sin^2\theta_c = \cos^2\theta_c$。用它來替換括號中的內容。</p>
|
| 238 |
+
<div class="formula-box">$$ T_t = \frac{2h}{V_1 \cos\theta_c} (\cos^2\theta_c) + \frac{X}{V_2} $$</div>
|
| 239 |
+
<p>消掉一個 $\cos\theta_c$,就得到了我們最終的、漂亮的線性方程式!</p>
|
| 240 |
+
<div class="formula-box">$$ T_t = \frac{2h\cos\theta_c}{V_1} + \frac{X}{V_2} $$</div>
|
| 241 |
+
</div>
|
| 242 |
+
</div>
|
| 243 |
+
|
| 244 |
+
<p>這個最終公式告訴我們,折射波的走時圖是一條直線,斜率是 $1/V_2$,並且在Y軸上產生一個截距,我們稱為「截時 $t_i$」。</p>
|
| 245 |
<div class="formula-box">
|
| 246 |
+
截時 (Intercept Time):
|
| 247 |
+
$$ t_i = \frac{2h\cos\theta_c}{V_1} $$
|
| 248 |
</div>
|
| 249 |
<p>這個截時 $t_i$ 的大小,就和第一層的厚度 $h$ 有關!</p>
|
| 250 |
<img src="1000030054.jpg" alt="直達波與折射波的完整走時曲線圖">
|