Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
def linear_interpolation(x, y, x_interp):
|
| 6 |
+
return np.interp(x_interp, x, y)
|
| 7 |
+
|
| 8 |
+
def quadratic_interpolation(x, y, x_interp):
|
| 9 |
+
coeffs = np.polyfit(x, y, 2)
|
| 10 |
+
return np.polyval(coeffs, x_interp)
|
| 11 |
+
|
| 12 |
+
def lagrange_interpolation(x, y, x_interp):
|
| 13 |
+
n = len(x)
|
| 14 |
+
y_interp = np.zeros_like(x_interp, dtype=float)
|
| 15 |
+
|
| 16 |
+
for i in range(n):
|
| 17 |
+
p = y[i]
|
| 18 |
+
for j in range(n):
|
| 19 |
+
if i != j:
|
| 20 |
+
p = p * (x_interp - x[j]) / (x[i] - x[j])
|
| 21 |
+
y_interp += p
|
| 22 |
+
|
| 23 |
+
return y_interp
|
| 24 |
+
|
| 25 |
+
def interpolate_and_plot(x_input, y_input, x_predict):
|
| 26 |
+
x = np.array([float(val.strip()) for val in x_input.split(',')])
|
| 27 |
+
y = np.array([float(val.strip()) for val in y_input.split(',')])
|
| 28 |
+
|
| 29 |
+
if len(x) != len(y):
|
| 30 |
+
return "Error: Number of x and y values must be the same.", None
|
| 31 |
+
|
| 32 |
+
x_interp = np.linspace(min(x), max(x), 100)
|
| 33 |
+
|
| 34 |
+
if len(x) == 2:
|
| 35 |
+
y_interp = linear_interpolation(x, y, x_interp)
|
| 36 |
+
method = "Linear"
|
| 37 |
+
elif len(x) == 3:
|
| 38 |
+
y_interp = quadratic_interpolation(x, y, x_interp)
|
| 39 |
+
method = "Quadratic"
|
| 40 |
+
else:
|
| 41 |
+
y_interp = lagrange_interpolation(x, y, x_interp)
|
| 42 |
+
method = "Lagrange"
|
| 43 |
+
|
| 44 |
+
plt.figure(figsize=(10, 6))
|
| 45 |
+
plt.scatter(x, y, color='red', label='Input points')
|
| 46 |
+
plt.plot(x_interp, y_interp, label=f'{method} interpolant')
|
| 47 |
+
plt.xlabel('x')
|
| 48 |
+
plt.ylabel('y')
|
| 49 |
+
plt.title(f'{method} Interpolation')
|
| 50 |
+
plt.legend()
|
| 51 |
+
plt.grid(True)
|
| 52 |
+
|
| 53 |
+
# Predict y value for given x
|
| 54 |
+
if x_predict is not None:
|
| 55 |
+
if x_predict < min(x) or x_predict > max(x):
|
| 56 |
+
return plt, f"Error: Prediction x value must be between {min(x)} and {max(x)}."
|
| 57 |
+
|
| 58 |
+
if len(x) == 2:
|
| 59 |
+
y_predict = linear_interpolation(x, y, [x_predict])[0]
|
| 60 |
+
elif len(x) == 3:
|
| 61 |
+
y_predict = quadratic_interpolation(x, y, [x_predict])[0]
|
| 62 |
+
else:
|
| 63 |
+
y_predict = lagrange_interpolation(x, y, [x_predict])[0]
|
| 64 |
+
|
| 65 |
+
plt.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point')
|
| 66 |
+
plt.legend()
|
| 67 |
+
|
| 68 |
+
return plt, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
|
| 69 |
+
|
| 70 |
+
return plt, None
|
| 71 |
+
|
| 72 |
+
iface = gr.Interface(
|
| 73 |
+
fn=interpolate_and_plot,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.Textbox(label="X values (comma-separated)"),
|
| 76 |
+
gr.Textbox(label="Y values (comma-separated)"),
|
| 77 |
+
gr.Number(label="X value to predict (optional)")
|
| 78 |
+
],
|
| 79 |
+
outputs=[
|
| 80 |
+
gr.Plot(label="Interpolation Plot"),
|
| 81 |
+
gr.Textbox(label="Predicted Y value")
|
| 82 |
+
],
|
| 83 |
+
title="Interpolation App",
|
| 84 |
+
description="Enter x and y values to see the interpolation graph. The method will be chosen based on the number of points:\n2 points: Linear, 3 points: Quadratic, >3 points: Lagrange.\n Optionally, enter an x value (between min and max of input x values) to predict its corresponding y value."
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
iface.launch()
|