dylan-marimo-io's picture
Rename gdpo_explainer.py to app.py
acb0bbf verified
# /// script
# requires-python = ">=3.12,<3.14"
# dependencies = [
# "marimo",
# "anywidget",
# "traitlets",
# "numpy==2.4.1",
# "matplotlib==3.10.8",
# "plotly==6.1.2",
# ]
# ///
import marimo
__generated_with = "0.19.2"
app = marimo.App(width="medium")
with app.setup(hide_code=True):
import marimo as mo
import numpy as np
from widget import GrpoGdpoWidget
@app.cell(hide_code=True)
def _():
mo.md(r"""
# GRPO vs GDPO: Why Normalization Order Matters
When you're training a model with multiple reward signals, you'd think weighting them is straightforward. Set 40% on correctness, 30% on format, 30% on style, and you're good.
But there's a subtle bug in how GRPO (Group Relative Policy Optimization) normalizes rewards that can completely wash out your smaller-scale signals. This is called **advantage collapse**. GDPO (Group
reward-Decoupled Normalization Policy Optimization) seeks to address this.
Let's see this in action with a toy example.
""")
return
@app.cell(hide_code=True)
def _():
mo.md("""
## The Book Ranking Problem
Imagine you're ranking ML books on three dimensions:
- **Enjoyment** (1-10): How fun is it to read?
- **Information** (1-10): How much do you learn?
- **Readability** (1-5): How easy is it to read? *(note the smaller scale)*
Adjust the sliders and watch how GRPO and GDPO rank the books differently.
""")
return
@app.cell(hide_code=True)
def _():
# Book 1: Pop-sci hype
book1_enjoy = mo.ui.slider(1, 10, value=8, label="Enjoy")
book1_info = mo.ui.slider(1, 10, value=3, label="Info")
book1_read = mo.ui.slider(1, 5, value=5, label="Read")
# Book 2: Dense textbook
book2_enjoy = mo.ui.slider(1, 10, value=3, label="Enjoy")
book2_info = mo.ui.slider(1, 10, value=9, label="Info")
book2_read = mo.ui.slider(1, 5, value=1, label="Read")
# Book 3: Hidden gem
book3_enjoy = mo.ui.slider(1, 10, value=7, label="Enjoy")
book3_info = mo.ui.slider(1, 10, value=8, label="Info")
book3_read = mo.ui.slider(1, 5, value=4, label="Read")
# Book 4: Startup hype
book4_enjoy = mo.ui.slider(1, 10, value=9, label="Enjoy")
book4_info = mo.ui.slider(1, 10, value=2, label="Info")
book4_read = mo.ui.slider(1, 5, value=5, label="Read")
# Book 5: Classic textbook
book5_enjoy = mo.ui.slider(1, 10, value=4, label="Enjoy")
book5_info = mo.ui.slider(1, 10, value=10, label="Info")
book5_read = mo.ui.slider(1, 5, value=2, label="Read")
book1_card = mo.vstack([
mo.md("**πŸ€– The Singularity is Nigh**<br><small>*pop-sci hype*</small>"),
book1_enjoy, book1_info, book1_read
], align="center")
book2_card = mo.vstack([
mo.md("**🧠 Attention Is All You Need: The Novel**<br><small>*dense math fiction*</small>"),
book2_enjoy, book2_info, book2_read
], align="center")
book3_card = mo.vstack([
mo.md("**πŸ† Rejected NeurIPS Papers**<br><small>*hidden gems*</small>"),
book3_enjoy, book3_info, book3_read
], align="center")
book4_card = mo.vstack([
mo.md("**πŸ“ˆ 10X Your Startup**<br><small>*one weird trick*</small>"),
book4_enjoy, book4_info, book4_read
], align="center")
book5_card = mo.vstack([
mo.md("**πŸ“š Deep Learning (Goodfellow)**<br><small>*the classic*</small>"),
book5_enjoy, book5_info, book5_read
], align="center")
mo.vstack([mo.hstack([book1_card, book2_card, book3_card], justify="space-around"), mo.hstack([book4_card, book5_card], justify="center")])
return (
book1_enjoy,
book1_info,
book1_read,
book2_enjoy,
book2_info,
book2_read,
book3_enjoy,
book3_info,
book3_read,
book4_enjoy,
book4_info,
book4_read,
book5_enjoy,
book5_info,
book5_read,
)
@app.cell(hide_code=True)
def _(book_results):
import plotly.graph_objects as go
book_names = [
"πŸ€– The Singularity is Nigh",
"🧠 Attention Is All You Need: The Novel",
"πŸ† Rejected NeurIPS Papers",
"πŸ“ˆ 10X Your Startup",
"πŸ“š Deep Learning (Goodfellow)",
]
grpo_r = book_results["grpo_ranks"]
gdpo_r = book_results["gdpo_ranks"]
grpo_adv = book_results["grpo_adv"]
gdpo_adv = book_results["gdpo_adv"]
rank_diff = np.abs(grpo_r - gdpo_r).sum()
# Sort by GDPO rank (descending so rank 1 is at top)
sort_idx = np.argsort(gdpo_r)[::-1]
sorted_names = [book_names[i] for i in sort_idx]
sorted_grpo_adv = grpo_adv[sort_idx]
sorted_gdpo_adv = gdpo_adv[sort_idx]
sorted_grpo_r = grpo_r[sort_idx]
sorted_gdpo_r = gdpo_r[sort_idx]
# Create bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
y=sorted_names,
x=sorted_grpo_adv,
name="GRPO",
orientation="h",
marker=dict(color="#ff6b6b"),
text=[f"Rank {r}" for r in sorted_grpo_r],
textposition="auto",
))
fig.add_trace(go.Bar(
y=sorted_names,
x=sorted_gdpo_adv,
name="GDPO",
orientation="h",
marker=dict(color="#4ecdc4"),
text=[f"Rank {r}" for r in sorted_gdpo_r],
textposition="auto",
))
fig.update_layout(
title="Book Rankings: GRPO vs GDPO",
xaxis_title="Advantage Score",
yaxis_title="",
barmode="group",
height=300,
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
)
chart = mo.ui.plotly(fig)
notes = []
grpo_unique = len(np.unique(np.round(grpo_adv, 6)))
gdpo_unique = len(np.unique(np.round(gdpo_adv, 6)))
if grpo_unique < 5 and gdpo_unique == 5:
notes.append(
mo.md(f"**Advantage collapse detected!** GRPO has only {grpo_unique} unique advantage values for 5 books, while GDPO has {gdpo_unique}. Different books are getting the same learning signal."))
if rank_diff > 0:
notes.append(mo.md("**Rankings differ!** Try adjusting sliders and notice how GRPO / GDPO advantage changes."))
else:
notes.append(
mo.md("""
The rankings match here, but look at the *advantage scores*. Even when the ordinal ranking is the same, the magnitude of the advantages differs. How would you prescribe a learning rate or clip range when the scale of your advantages depends on which normalization you use?
""")
)
mo.vstack([chart] + notes)
return
@app.cell(hide_code=True)
def _():
mo.md(r"""
## So What's Actually Happening?
The key insight: when one reward has much higher variance than another, the combined variance is dominated by the high-variance reward. After normalization, the low-variance signal contributes almost nothing.
**GRPO** aggregates rewards first, then normalizes:
$$r_j = \sum_i w_i \cdot r_j^{(i)}, \quad A_j^{\text{GRPO}} = \frac{r_j - \mu(r)}{\sigma(r)}$$
**GDPO** normalizes each reward independently, then aggregates:
$$\tilde{r}_j^{(i)} = \frac{r_j^{(i)} - \mu(r^{(i)})}{\sigma(r^{(i)})}, \quad A_j^{\text{GDPO}} = \sum_i w_i \cdot \tilde{r}_j^{(i)}$$
The difference is subtle but critical. In GRPO, if Enjoyment and Information both range 1-10 but Readability only ranges 1-5, the Readability signal gets washed out when combined with the larger-scale rewards.
GDPO fixes this by normalizing each dimension to the same scale (mean=0, std=1) *before* combining them.
""")
return
@app.cell(hide_code=True)
def _():
mo.md("""
## This Gets Worse with Binary Rewards
The [GDPO paper](https://arxiv.org/abs/2601.05242) demonstrates this on the [Berkeley Function Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html) dataset, where LLM outputs are scored on multiple binary criteria:
- **Correctness**: Does the function call execute successfully?
- **Style**: Are the arguments formatted correctly?
- **Conciseness**: Is the call free of redundant parameters?
The table below simulates 12 rollouts from such a system. Click the cells to toggle rewards. Notice how GRPO assigns **identical advantages** to rollouts with the same total (e.g., `[1,0,1]` and `[0,1,1]` both sum to 2), while GDPO differentiates them based on *which* rewards were achieved.
""")
return
@app.cell
def _():
widget = GrpoGdpoWidget()
widget_view = mo.ui.anywidget(widget)
widget_view
return (widget_view,)
@app.cell(hide_code=True)
def _():
mo.md("""
## Does This Actually Matter in Practice?
Let's train a toy policy and see. We have 3 binary rewards and want to maximize all of them. The policy learns a probability for each dimension.
""")
return
@app.cell
def _():
reuse_toggle = mo.ui.switch(label="Train on widget data (instead of fresh samples)", value=False)
reuse_toggle
return (reuse_toggle,)
@app.cell(hide_code=True)
def _(gdpo_history, grpo_history):
import matplotlib.pyplot as plt
_fig, _ax = plt.subplots(figsize=(10, 5))
colors = ['#1f77b4', '#ff7f0e', '#2ca02c']
labels = ['correctness', 'style', 'conciseness']
epochs = range(len(grpo_history))
for _i, (_color, _label) in enumerate(zip(colors, labels)):
_ax.plot(epochs, gdpo_history[:, _i], '-', color=_color, linewidth=2,
label=f'{_label} (GDPO)')
for _i, (_color, _label) in enumerate(zip(colors, labels)):
_ax.plot(epochs, grpo_history[:, _i], '--', color=_color, linewidth=2,
label=f'{_label} (GRPO)')
_ax.set_xlabel('Epoch')
_ax.set_ylabel('Probability')
_ax.set_title('GRPO vs GDPO: Policy Convergence')
_ax.set_ylim(0, 1.05)
_ax.legend(loc='lower right', ncol=2)
_ax.grid(True, alpha=0.3)
mo.md("""
**What you're seeing**: GDPO learns to maximize each dimension independently (solid lines converge to ~1.0). GRPO collapses all dimensions together (dashed lines follow similar trajectories).
This is advantage collapse in action. GRPO can't tell which specific rewards to optimize because they all get the same gradient signal.
""")
_fig
return
@app.cell(hide_code=True)
def _():
mo.md(r"""
## Takeaways
**When to use GDPO:**
- Multiple reward signals at different scales
- Binary/categorical rewards mixed with continuous
- You care about all signals contributing proportionally to their weights
**When GRPO is fine:**
- Single reward signal
- All rewards at similar scales
- One dominant reward, others are just regularizers
**Implementation** (it's a one-line change):
- TRL: `apply_gdpo: True`
- VERL: `adv_estimator: 'gdpo'`
**Learn more:**
- Paper: [arXiv:2601.05242](https://arxiv.org/abs/2601.05242)
- Code: [github.com/NVlabs/GDPO](https://github.com/NVlabs/GDPO)
---
*Built with [marimo](https://marimo.io)*
""")
return
@app.cell
def _(
book1_enjoy,
book1_info,
book1_read,
book2_enjoy,
book2_info,
book2_read,
book3_enjoy,
book3_info,
book3_read,
book4_enjoy,
book4_info,
book4_read,
book5_enjoy,
book5_info,
book5_read,
):
def normalize(arr):
arr = np.array(arr, dtype=np.float64)
std = arr.std()
if std == 0:
return np.zeros_like(arr)
return (arr - arr.mean()) / std
# Collect book scores
rewards = np.array([
[book1_enjoy.value, book1_info.value, book1_read.value],
[book2_enjoy.value, book2_info.value, book2_read.value],
[book3_enjoy.value, book3_info.value, book3_read.value],
[book4_enjoy.value, book4_info.value, book4_read.value],
[book5_enjoy.value, book5_info.value, book5_read.value],
], dtype=np.float64)
# GRPO: combine first, then normalize
combined = rewards.sum(axis=1)
grpo_advantages = normalize(combined)
# GDPO: normalize each dimension, then combine
gdpo_advantages = np.zeros(5)
for dim in range(3):
gdpo_advantages += normalize(rewards[:, dim])
# Rank (lower = better)
grpo_ranks = np.argsort(np.argsort(-grpo_advantages)) + 1
gdpo_ranks = np.argsort(np.argsort(-gdpo_advantages)) + 1
book_results = {
"grpo_adv": grpo_advantages,
"gdpo_adv": gdpo_advantages,
"grpo_ranks": grpo_ranks,
"gdpo_ranks": gdpo_ranks,
"rewards": rewards,
}
return book_results, normalize
@app.cell
def _(normalize):
def compute_grpo_advantages(rewards):
totals = rewards.sum(axis=1)
return normalize(totals)
def compute_gdpo_advantages(rewards):
advantages = np.zeros(len(rewards))
for dim in range(rewards.shape[1]):
advantages += normalize(rewards[:, dim])
return advantages
def train_policy(method, epochs=100, lr=0.1, batch_size=32, seed=41, fixed_rewards=None):
rng = np.random.default_rng(seed)
logits = np.zeros(3)
history = []
for _epoch in range(epochs):
probs = 1 / (1 + np.exp(-logits))
history.append(probs.copy())
if fixed_rewards is not None:
rewards = fixed_rewards
else:
rewards = (rng.random((batch_size, 3)) < probs).astype(np.float64)
if method == 'grpo':
advantages = compute_grpo_advantages(rewards)
else:
advantages = compute_gdpo_advantages(rewards)
for i in range(3):
grad = ((rewards[:, i] - probs[i]) * advantages).mean()
logits[i] += lr * grad
return np.array(history)
return (train_policy,)
@app.cell
def _(reuse_toggle, train_policy, widget_view):
def widget_rewards_to_array(rewards_list):
return np.array([
[r["correctness"], r["style"], r["conciseness"]]
for r in rewards_list
], dtype=np.float64)
if reuse_toggle.value:
fixed = widget_rewards_to_array(widget_view.widget.rewards)
else:
fixed = None
grpo_history = train_policy('grpo', epochs=150, lr=0.15, fixed_rewards=fixed)
gdpo_history = train_policy('gdpo', epochs=150, lr=0.15, fixed_rewards=fixed)
return gdpo_history, grpo_history
if __name__ == "__main__":
app.run()