Update app.py
Browse files
app.py
CHANGED
|
@@ -3,174 +3,44 @@ import numpy as np
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from matplotlib.patches import Polygon, Circle
|
| 5 |
|
| 6 |
-
# Function
|
| 7 |
-
def calculate_distance(x1, y1, x2, y2):
|
| 8 |
-
return np.sqrt((x2 - x1) * 2 + (y2 - y1) * 2)
|
| 9 |
|
| 10 |
-
# Function to calculate angles using the Law of Cosines
|
| 11 |
-
def calculate_angle(a, b, c):
|
| 12 |
-
try:
|
| 13 |
-
angle = np.degrees(np.acos((b * 2 + c * 2 - a ** 2) / (2 * b * c)))
|
| 14 |
-
except ValueError:
|
| 15 |
-
angle = 0 # Handle possible domain error in acos
|
| 16 |
-
return angle
|
| 17 |
-
|
| 18 |
-
# Function to calculate area using Heron's formula
|
| 19 |
-
def calculate_area(a, b, c):
|
| 20 |
-
s = (a + b + c) / 2
|
| 21 |
-
area = np.sqrt(s * (s - a) * (s - b) * (s - c))
|
| 22 |
-
return area
|
| 23 |
-
|
| 24 |
-
# Function to calculate the perimeter
|
| 25 |
-
def calculate_perimeter(a, b, c):
|
| 26 |
-
return a + b + c
|
| 27 |
-
|
| 28 |
-
# Function to calculate the radius of the inscribed circle
|
| 29 |
-
def calculate_radius_inscribed_circle(a, b, c):
|
| 30 |
-
try:
|
| 31 |
-
s = (a + b + c) / 2
|
| 32 |
-
area = calculate_area(a, b, c)
|
| 33 |
-
radius = area / s
|
| 34 |
-
except ZeroDivisionError:
|
| 35 |
-
radius = 0 # Handle case where area or perimeter is zero
|
| 36 |
-
return radius
|
| 37 |
-
|
| 38 |
-
# Function to calculate the radius of the circumscribed circle
|
| 39 |
-
def calculate_radius_circumscribed_circle(a, b, c):
|
| 40 |
-
try:
|
| 41 |
-
area = calculate_area(a, b, c)
|
| 42 |
-
radius = (a * b * c) / (4 * area)
|
| 43 |
-
except ZeroDivisionError:
|
| 44 |
-
radius = 0 # Handle case where area is zero
|
| 45 |
-
return radius
|
| 46 |
-
|
| 47 |
-
# Function to calculate the centroid coordinates
|
| 48 |
-
def calculate_centroid(x1, y1, x2, y2, x3, y3):
|
| 49 |
-
G_x = (x1 + x2 + x3) / 3
|
| 50 |
-
G_y = (y1 + y2 + y3) / 3
|
| 51 |
-
return G_x, G_y
|
| 52 |
-
|
| 53 |
-
# Function to calculate the incenter coordinates
|
| 54 |
-
def calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c):
|
| 55 |
-
try:
|
| 56 |
-
I_x = (a * x1 + b * x2 + c * x3) / (a + b + c)
|
| 57 |
-
I_y = (a * y1 + b * y2 + c * y3) / (a + b + c)
|
| 58 |
-
except ZeroDivisionError:
|
| 59 |
-
I_x, I_y = 0, 0 # Handle division by zero if sides sum to zero
|
| 60 |
-
return I_x, I_y
|
| 61 |
-
|
| 62 |
-
# Function to calculate the circumcenter coordinates
|
| 63 |
-
def calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c):
|
| 64 |
-
try:
|
| 65 |
-
D = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
|
| 66 |
-
U_x = ((x1*2 + y12) * (y2 - y3) + (x22 + y22) * (y3 - y1) + (x32 + y3*2) * (y1 - y2)) / D
|
| 67 |
-
U_y = ((x1*2 + y12) * (x3 - x2) + (x22 + y22) * (x1 - x3) + (x32 + y3*2) * (x2 - x1)) / D
|
| 68 |
-
except ZeroDivisionError:
|
| 69 |
-
U_x, U_y = 0, 0 # Handle division by zero in circumcenter calculation
|
| 70 |
-
return U_x, U_y
|
| 71 |
-
|
| 72 |
-
# Function to calculate midpoints of sides
|
| 73 |
-
def calculate_midpoints(x1, y1, x2, y2, x3, y3):
|
| 74 |
-
# Midpoint of AB
|
| 75 |
-
M1_x = (x1 + x2) / 2
|
| 76 |
-
M1_y = (y1 + y2) / 2
|
| 77 |
-
# Midpoint of BC
|
| 78 |
-
M2_x = (x2 + x3) / 2
|
| 79 |
-
M2_y = (y2 + y3) / 2
|
| 80 |
-
# Midpoint of CA
|
| 81 |
-
M3_x = (x3 + x1) / 2
|
| 82 |
-
M3_y = (y3 + y1) / 2
|
| 83 |
-
return (M1_x, M1_y), (M2_x, M2_y), (M3_x, M3_y)
|
| 84 |
-
|
| 85 |
-
# Function to format values close to zero as 0
|
| 86 |
-
def format_zero(val):
|
| 87 |
-
if abs(val) < 1e-6:
|
| 88 |
-
return 0.0
|
| 89 |
-
return val
|
| 90 |
-
|
| 91 |
-
# Function to plot the triangle with all points in different colors and a legend
|
| 92 |
-
def plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c):
|
| 93 |
-
fig, ax = plt.subplots(figsize=(8, 6))
|
| 94 |
-
triangle = Polygon([(x1, y1), (x2, y2), (x3, y3)], closed=True, edgecolor='b', facecolor='lightblue')
|
| 95 |
-
ax.add_patch(triangle)
|
| 96 |
-
|
| 97 |
-
# Define colors for different points
|
| 98 |
-
vertex_color = 'blue'
|
| 99 |
-
midpoint_color = 'green'
|
| 100 |
-
centroid_color = 'orange'
|
| 101 |
-
incenter_color = 'red'
|
| 102 |
-
circumcenter_color = 'purple'
|
| 103 |
-
|
| 104 |
-
# Plot the triangle vertices
|
| 105 |
-
vertices = [(x1, y1), (x2, y2), (x3, y3)]
|
| 106 |
-
vertex_labels = [f"Vertex A ({x1:.3f}, {y1:.3f})", f"Vertex B ({x2:.3f}, {y2:.3f})", f"Vertex C ({x3:.3f}, {y3:.3f})"]
|
| 107 |
-
for i, (vx, vy) in enumerate(vertices):
|
| 108 |
-
ax.scatter(vx, vy, color=vertex_color, zorder=3)
|
| 109 |
-
|
| 110 |
-
# Plot key points with their corresponding colors
|
| 111 |
-
key_points = [
|
| 112 |
-
(I_x, I_y, incenter_color),
|
| 113 |
-
(U_x, U_y, circumcenter_color),
|
| 114 |
-
(G_x, G_y, centroid_color)
|
| 115 |
-
]
|
| 116 |
-
key_points_labels = [f"Incenter ({I_x:.3f}, {I_y:.3f})", f"Circumcenter ({U_x:.3f}, {U_y:.3f})", f"Centroid ({G_x:.3f}, {G_y:.3f})"]
|
| 117 |
-
|
| 118 |
-
for x, y, color in key_points:
|
| 119 |
-
ax.scatter(x, y, color=color, zorder=4)
|
| 120 |
-
|
| 121 |
-
# Plot midpoints of sides
|
| 122 |
-
for i, (mx, my) in enumerate(midpoints):
|
| 123 |
-
ax.scatter(mx, my, color=midpoint_color, zorder=5)
|
| 124 |
-
|
| 125 |
-
# Draw the inscribed circle (incircle)
|
| 126 |
-
radius_in = calculate_radius_inscribed_circle(a, b, c)
|
| 127 |
-
incircle = Circle((I_x, I_y), radius_in, color=incenter_color, fill=False, linestyle='--', linewidth=2, label="Inscribed Circle")
|
| 128 |
-
ax.add_patch(incircle)
|
| 129 |
-
|
| 130 |
-
# Draw the circumscribed circle (circumcircle)
|
| 131 |
-
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
|
| 132 |
-
circumcircle = Circle((U_x, U_y), radius_circum, color=circumcenter_color, fill=False, linestyle='--', linewidth=2, label="Circumscribed Circle")
|
| 133 |
-
ax.add_patch(circumcircle)
|
| 134 |
-
|
| 135 |
-
# Add legend
|
| 136 |
-
handles = [
|
| 137 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[0]),
|
| 138 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[1]),
|
| 139 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=8, label=vertex_labels[2]),
|
| 140 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints[0]),
|
| 141 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints[1]),
|
| 142 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=8, label=midpoints[2]),
|
| 143 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=8, label=key_points_labels[0]),
|
| 144 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=8, label=key_points_labels[1]),
|
| 145 |
-
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=centroid_color, markersize=8, label=key_points_labels[2])
|
| 146 |
-
]
|
| 147 |
-
ax.legend(handles=handles, loc='upper left', fontsize=12)
|
| 148 |
-
|
| 149 |
-
# Adjust the plot limits and aspect ratio
|
| 150 |
-
padding = 3
|
| 151 |
-
ax.set_xlim([min(x1, x2, x3) - padding, max(x1, x2, x3) + padding])
|
| 152 |
-
ax.set_ylim([min(y1, y2, y3) - padding, max(y1, y2, y3) + padding])
|
| 153 |
-
ax.set_aspect('equal', adjustable='datalim')
|
| 154 |
-
|
| 155 |
-
ax.set_title('Solved Triangle', fontsize=18)
|
| 156 |
-
ax.set_xlabel('X-axis', fontsize=12)
|
| 157 |
-
ax.set_ylabel('Y-axis', fontsize=12)
|
| 158 |
-
|
| 159 |
-
plt.grid(True)
|
| 160 |
-
st.pyplot(fig)
|
| 161 |
-
|
| 162 |
-
# Function to check if the sides form a valid triangle
|
| 163 |
-
def is_valid_triangle(a, b, c):
|
| 164 |
-
# Check if the sum of two sides is greater than the third side (Triangle Inequality Theorem)
|
| 165 |
-
return a + b > c and b + c > a and c + a > b
|
| 166 |
-
|
| 167 |
-
# Main function to interact with the user
|
| 168 |
def main():
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
x1 = st.sidebar.number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 175 |
y1 = st.sidebar.number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 176 |
x2 = st.sidebar.number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
|
@@ -178,92 +48,40 @@ def main():
|
|
| 178 |
x3 = st.sidebar.number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 179 |
y3 = st.sidebar.number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 180 |
|
| 181 |
-
if st.sidebar.button("Calculate"):
|
| 182 |
-
# Calculate the lengths of the sides of the triangle using Euclidean distance
|
| 183 |
a = calculate_distance(x2, y2, x3, y3)
|
| 184 |
b = calculate_distance(x1, y1, x3, y3)
|
| 185 |
c = calculate_distance(x1, y1, x2, y2)
|
| 186 |
|
| 187 |
-
# Validate if it's a valid triangle
|
| 188 |
if not is_valid_triangle(a, b, c):
|
| 189 |
-
st.error("The entered points do not form a valid triangle.")
|
| 190 |
-
return
|
| 191 |
-
|
| 192 |
-
# Calculate angles using the Law of Cosines
|
| 193 |
-
A = calculate_angle(a, b, c)
|
| 194 |
-
B = calculate_angle(b, a, c)
|
| 195 |
-
C = calculate_angle(c, a, b)
|
| 196 |
-
|
| 197 |
-
# Check if angles sum up to 180 degrees
|
| 198 |
-
if abs(A + B + C - 180) > 1e-2:
|
| 199 |
-
st.error("The sum of the angles is not 180 degrees.")
|
| 200 |
return
|
| 201 |
|
| 202 |
-
# Calculate
|
|
|
|
| 203 |
area = calculate_area(a, b, c)
|
| 204 |
perimeter = calculate_perimeter(a, b, c)
|
| 205 |
radius_in = calculate_radius_inscribed_circle(a, b, c)
|
| 206 |
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
|
| 207 |
-
|
| 208 |
-
# Calculate centroid, incenter, and circumcenter coordinates
|
| 209 |
G_x, G_y = calculate_centroid(x1, y1, x2, y2, x3, y3)
|
| 210 |
I_x, I_y = calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c)
|
| 211 |
U_x, U_y = calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c)
|
| 212 |
-
|
| 213 |
-
# Calculate midpoints of the sides
|
| 214 |
midpoints = calculate_midpoints(x1, y1, x2, y2, x3, y3)
|
| 215 |
|
| 216 |
-
# Display results
|
| 217 |
col1, col2 = st.columns(2)
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
st.subheader("Coordinates of Triangle:")
|
| 221 |
-
st.markdown(f"Vertex A: *({x1:.3f}, {y1:.3f})*")
|
| 222 |
-
st.markdown(f"Vertex B: *({x2:.3f}, {y2:.3f})*")
|
| 223 |
-
st.markdown(f"Vertex C: *({x3:.3f}, {y3:.3f})*")
|
| 224 |
-
|
| 225 |
-
with col2:
|
| 226 |
-
st.subheader("Mid-Points of Triangle:")
|
| 227 |
-
st.markdown(f"Midpoint of AB: ({midpoints[0][0]:.3f}, {midpoints[0][1]:.3f})")
|
| 228 |
-
st.markdown(f"Midpoint of BC: ({midpoints[1][0]:.3f}, {midpoints[1][1]:.3f})")
|
| 229 |
-
st.markdown(f"Midpoint of CA: ({midpoints[2][0]:.3f}, {midpoints[2][1]:.3f})")
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
col1, col2 = st.columns(2)
|
| 233 |
-
|
| 234 |
-
with col1:
|
| 235 |
-
st.subheader("Angles of Triangle:")
|
| 236 |
-
st.markdown(f"Angle A: *{format_zero(A):.3f}Β°*")
|
| 237 |
-
st.markdown(f"Angle B: *{format_zero(B):.3f}Β°*")
|
| 238 |
-
st.markdown(f"Angle C: *{format_zero(C):.3f}Β°*")
|
| 239 |
-
|
| 240 |
-
with col2:
|
| 241 |
-
st.subheader("Sides of Triangle:")
|
| 242 |
-
st.markdown(f"Side a: *{format_zero(a):.3f}* units")
|
| 243 |
-
st.markdown(f"Side b: *{format_zero(b):.3f}* units")
|
| 244 |
-
st.markdown(f"Side c: *{format_zero(c):.3f}* units")
|
| 245 |
|
| 246 |
-
|
| 247 |
-
col1
|
|
|
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
st.markdown(f"Radius: *{radius_in:.3f}* units")
|
| 253 |
-
|
| 254 |
-
with col2:
|
| 255 |
-
st.subheader("Circumcenter of Triangle:")
|
| 256 |
-
st.markdown(f"Coordinates: *({format_zero(U_x):.3f}, {format_zero(U_y):.3f})*")
|
| 257 |
-
st.markdown(f"Radius: *{radius_circum:.3f}* units")
|
| 258 |
-
|
| 259 |
-
with col3:
|
| 260 |
-
st.subheader("Other Properties:")
|
| 261 |
-
st.markdown(f"Area: *{format_zero(area):.3f}* square units")
|
| 262 |
-
st.markdown(f"Perimeter: *{format_zero(perimeter):.3f}* units")
|
| 263 |
-
st.markdown(f"Centroid: *({format_zero(G_x):.3f}, {format_zero(G_y):.3f})*")
|
| 264 |
|
| 265 |
-
# Display triangle graph with midpoints and colored points
|
| 266 |
plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c)
|
| 267 |
|
| 268 |
-
if
|
| 269 |
-
main()
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from matplotlib.patches import Polygon, Circle
|
| 5 |
|
| 6 |
+
# Function definitions remain the same
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def main():
|
| 9 |
+
# Custom styles for the app
|
| 10 |
+
st.markdown("""
|
| 11 |
+
<style>
|
| 12 |
+
body {
|
| 13 |
+
background-color: #f0f2f6;
|
| 14 |
+
color: #333333;
|
| 15 |
+
font-family: 'Arial', sans-serif;
|
| 16 |
+
}
|
| 17 |
+
.stSidebar {
|
| 18 |
+
background-color: #1e3a56;
|
| 19 |
+
}
|
| 20 |
+
h1, h2, h3, h4, h5, h6 {
|
| 21 |
+
color: #1e3a56;
|
| 22 |
+
font-family: 'Georgia', serif;
|
| 23 |
+
}
|
| 24 |
+
.stButton>button {
|
| 25 |
+
background-color: #1e3a56;
|
| 26 |
+
color: white;
|
| 27 |
+
border-radius: 5px;
|
| 28 |
+
font-size: 16px;
|
| 29 |
+
padding: 10px 20px;
|
| 30 |
+
}
|
| 31 |
+
.stButton>button:hover {
|
| 32 |
+
background-color: #0d2a45;
|
| 33 |
+
}
|
| 34 |
+
.stMarkdown {
|
| 35 |
+
font-size: 16px;
|
| 36 |
+
}
|
| 37 |
+
</style>
|
| 38 |
+
""", unsafe_allow_html=True)
|
| 39 |
+
|
| 40 |
+
st.title("π¨ Advanced Triangle Solver")
|
| 41 |
+
st.sidebar.header("π’ Enter Triangle Coordinates:")
|
| 42 |
+
|
| 43 |
+
# Sidebar inputs
|
| 44 |
x1 = st.sidebar.number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 45 |
y1 = st.sidebar.number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 46 |
x2 = st.sidebar.number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
|
|
|
| 48 |
x3 = st.sidebar.number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 49 |
y3 = st.sidebar.number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
|
| 50 |
|
| 51 |
+
if st.sidebar.button("π Calculate"):
|
|
|
|
| 52 |
a = calculate_distance(x2, y2, x3, y3)
|
| 53 |
b = calculate_distance(x1, y1, x3, y3)
|
| 54 |
c = calculate_distance(x1, y1, x2, y2)
|
| 55 |
|
|
|
|
| 56 |
if not is_valid_triangle(a, b, c):
|
| 57 |
+
st.error("β The entered points do not form a valid triangle.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
return
|
| 59 |
|
| 60 |
+
# Calculate angles, area, etc.
|
| 61 |
+
A, B, C = calculate_angle(a, b, c), calculate_angle(b, a, c), calculate_angle(c, a, b)
|
| 62 |
area = calculate_area(a, b, c)
|
| 63 |
perimeter = calculate_perimeter(a, b, c)
|
| 64 |
radius_in = calculate_radius_inscribed_circle(a, b, c)
|
| 65 |
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
|
|
|
|
|
|
|
| 66 |
G_x, G_y = calculate_centroid(x1, y1, x2, y2, x3, y3)
|
| 67 |
I_x, I_y = calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c)
|
| 68 |
U_x, U_y = calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c)
|
|
|
|
|
|
|
| 69 |
midpoints = calculate_midpoints(x1, y1, x2, y2, x3, y3)
|
| 70 |
|
| 71 |
+
# Display results
|
| 72 |
col1, col2 = st.columns(2)
|
| 73 |
+
col1.metric("π Angle A (Β°)", f"{A:.2f}")
|
| 74 |
+
col2.metric("π Side a (units)", f"{a:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# Additional metrics for better organization
|
| 77 |
+
col1.metric("π Angle B (Β°)", f"{B:.2f}")
|
| 78 |
+
col2.metric("π Side b (units)", f"{b:.2f}")
|
| 79 |
|
| 80 |
+
st.subheader("π Properties")
|
| 81 |
+
st.write(f"**Area:** {area:.2f} sq. units")
|
| 82 |
+
st.write(f"**Perimeter:** {perimeter:.2f} units")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
| 84 |
plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c)
|
| 85 |
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
main()
|