Spaces:
Running
Running
File size: 14,887 Bytes
de93bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# -*- coding: utf-8 -*-
# Copyright 2020 United Kingdom Research and Innovation
# Copyright 2020 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
# Claire Delplancke (University of Bath)
from cil.optimisation.functions import Function, IndicatorBox, MixedL21Norm, MixedL11Norm
from cil.optimisation.operators import GradientOperator
import numpy as np
from numbers import Number
import warnings
import logging
class TotalVariationNew(Function):
r""" Total variation Function
.. math:: \mathrm{TV}(u) := \|\nabla u\|_{2,1} = \sum \|\nabla u\|_{2},\, (\mbox{isotropic})
.. math:: \mathrm{TV}(u) := \|\nabla u\|_{1,1} = \sum \|\nabla u\|_{1}\, (\mbox{anisotropic})
Notes
-----
The :code:`TotalVariation` (TV) :code:`Function` acts as a composite function, i.e.,
the composition of the :class:`.MixedL21Norm` function and the :class:`.GradientOperator` operator,
.. math:: f(u) = \|u\|_{2,1}, \Rightarrow (f\circ\nabla)(u) = f(\nabla x) = \mathrm{TV}(u)
In that case, the proximal operator of TV does not have an exact solution and we use an iterative
algorithm to solve:
.. math:: \mathrm{prox}_{\tau \mathrm{TV}}(b) := \underset{u}{\mathrm{argmin}} \frac{1}{2\tau}\|u - b\|^{2} + \mathrm{TV}(u)
The algorithm used for the proximal operator of TV is the Fast Gradient Projection algorithm (or FISTA)
applied to the _dual problem_ of the above problem, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`, :cite:`Zhu2010`.
See also "Multicontrast MRI Reconstruction with Structure-Guided Total Variation", Ehrhardt, Betcke, 2016.
Parameters
----------
max_iteration : :obj:`int`, default = 5
Maximum number of iterations for the FGP algorithm to solve to solve the dual problem
of the Total Variation Denoising problem (ROF). If warm_start=False, this should be around 100,
or larger, with a set tolerance.
tolerance : :obj:`float`, default = None
Stopping criterion for the FGP algorithm used to to solve the dual problem
of the Total Variation Denoising problem (ROF). If the difference between iterates in the FGP algorithm is less than the tolerance
the iterations end before the max_iteration number.
.. math:: \|x^{k+1} - x^{k}\|_{2} < \mathrm{tolerance}
correlation : :obj:`str`, default = `Space`
Correlation between `Space` and/or `SpaceChannels` for the :class:`.GradientOperator`.
backend : :obj:`str`, default = `c`
Backend to compute the :class:`.GradientOperator`
lower : :obj:`'float`, default = None
A constraint is enforced using the :class:`.IndicatorBox` function, e.g., :code:`IndicatorBox(lower, upper)`.
upper : :obj:`'float`, default = None
A constraint is enforced using the :class:`.IndicatorBox` function, e.g., :code:`IndicatorBox(lower, upper)`.
isotropic : :obj:`boolean`, default = True
Use either isotropic or anisotropic definition of TV.
.. math:: |x|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2}},\, (\mbox{isotropic})
.. math:: |x|_{1} = |x_{1}| + |x_{2}|\, (\mbox{anisotropic})
split : :obj:`boolean`, default = False
Splits the Gradient into spatial gradient and spectral or temporal gradient for multichannel data.
info : :obj:`boolean`, default = False
Information is printed for the stopping criterion of the FGP algorithm used to solve the dual problem
of the Total Variation Denoising problem (ROF).
strong_convexity_constant : :obj:`float`, default = 0
A strongly convex term weighted by the :code:`strong_convexity_constant` (:math:`\gamma`) parameter is added to the Total variation.
Now the :code:`TotalVariation` function is :math:`\gamma` - strongly convex and the proximal operator is
.. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2\tau}\|u - b\|^{2} + \mathrm{TV}(u) + \frac{\gamma}{2}\|u\|^{2} \Leftrightarrow
.. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2\frac{\tau}{1+\gamma\tau}}\|u - \frac{b}{1+\gamma\tau}\|^{2} + \mathrm{TV}(u)
warm_start : :obj:`boolean`, default = True
If set to true, the FGP algorithm used to solve the dual problem of the Total Variation Denoising problem (ROF) is initiated by the final value from the previous iteration and not at zero.
This allows the max_iteration value to be reduced to 5-10 iterations.
Note
----
With warm_start set to the default, True, the TV function will keep in memory the range of the gradient of the image to be denoised, i.e. N times the dimensionality of the image. This increases the memory requirements.
However, during the evaluation of `proximal` the memory requirements will be unchanged as the same amount of memory will need to be allocated and deallocated.
Note
----
In the case where the Total variation becomes a :math:`\gamma` - strongly convex function, i.e.,
.. math:: \mathrm{TV}(u) + \frac{\gamma}{2}\|u\|^{2}
:math:`\gamma` should be relatively small, so as the second term above will not act as an additional regulariser.
For more information, see :cite:`Rasch2020`, :cite:`CP2011`.
Examples
--------
.. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + \alpha\|\nabla u\|_{2,1}
>>> alpha = 2.0
>>> TV = TotalVariation()
>>> sol = TV.proximal(b, tau = alpha)
Examples
--------
.. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + \alpha\|\nabla u\|_{1,1} + \mathbb{I}_{C}(u)
where :math:`C = \{1.0\leq u\leq 2.0\}`.
>>> alpha = 2.0
>>> TV = TotalVariation(isotropic=False, lower=1.0, upper=2.0)
>>> sol = TV.proximal(b, tau = alpha)
Examples
--------
.. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + (\alpha\|\nabla u\|_{2,1} + \frac{\gamma}{2}\|u\|^{2})
>>> alpha = 2.0
>>> gamma = 1e-3
>>> TV = alpha * TotalVariation(isotropic=False, strong_convexity_constant=gamma)
>>> sol = TV.proximal(b, tau = 1.0)
"""
def __init__(self,
max_iteration=10,
tolerance=None,
correlation="Space",
backend="c",
lower=None,
upper=None,
isotropic=True,
split=False,
info=False,
strong_convexity_constant=0,
warm_start=True):
super(TotalVariationNew, self).__init__(L=None)
# Regularising parameter = alpha
self.regularisation_parameter = 1.
self.iterations = max_iteration
self.tolerance = tolerance
# Total variation correlation (isotropic=Default)
self.isotropic = isotropic
# correlation space or spacechannels
self.correlation = correlation
self.backend = backend
# Define orthogonal projection onto the convex set C
if lower is None:
lower = -np.inf
if upper is None:
upper = np.inf
self.lower = lower
self.upper = upper
self.projection_C = IndicatorBox(lower, upper).proximal
# Setup GradientOperator as None. This is to avoid domain argument in the __init__
self._gradient = None
self._domain = None
self.info = info
if self.info:
warnings.warn(" `info` is deprecate. Please use logging instead.")
# splitting Gradient
self.split = split
# For the warm_start functionality
self.warm_start = warm_start
self._p2 = None
# Strong convexity for TV
self.strong_convexity_constant = strong_convexity_constant
# Define Total variation norm
if self.isotropic:
self.func = MixedL21Norm()
else:
self.func = MixedL11Norm()
def _get_p2(self):
r"""The initial value for the dual in the proximal calculation - allocated to zero in the case of warm_start=False
or initialised as the last iterate seen in the proximal calculation in the case warm_start=True ."""
if self._p2 is None:
return self.gradient.range_geometry().allocate(0)
else:
return self._p2
@property
def regularisation_parameter(self):
return self._regularisation_parameter
@regularisation_parameter.setter
def regularisation_parameter(self, value):
if not isinstance(value, Number):
raise TypeError(
"regularisation_parameter: expected a number, got {}".format(type(value)))
self._regularisation_parameter = value
def __call__(self, x):
r""" Returns the value of the TotalVariation function at :code:`x` ."""
try:
self._domain = x.geometry
except:
self._domain = x
# Compute Lipschitz constant provided that domain is not None.
# Lipschitz constant dependes on the GradientOperator, which is configured only if domain is not None
if self._L is None:
self.calculate_Lipschitz()
if self.strong_convexity_constant > 0:
strongly_convex_term = (
self.strong_convexity_constant/2)*x.squared_norm()
else:
strongly_convex_term = 0
return self.regularisation_parameter * self.func(self.gradient.direct(x)) + strongly_convex_term
def proximal(self, x, tau, out=None):
r""" Returns the proximal operator of the TotalVariation function at :code:`x` ."""
if self.strong_convexity_constant > 0:
strongly_convex_factor = (1 + tau * self.strong_convexity_constant)
x /= strongly_convex_factor
tau /= strongly_convex_factor
if out is None:
solution = self._fista_on_dual_rof(x, tau)
else:
self._fista_on_dual_rof(x, tau, out=out)
if self.strong_convexity_constant > 0:
x *= strongly_convex_factor
tau *= strongly_convex_factor
if out is None:
return solution
def _fista_on_dual_rof(self, x, tau, out=None):
r""" Runs the Fast Gradient Projection (FGP) algorithm to solve the dual problem
of the Total Variation Denoising problem (ROF).
.. math: \max_{\|y\|_{\infty}<=1.} \frac{1}{2}\|\nabla^{*} y + x \|^{2} - \frac{1}{2}\|x\|^{2}
"""
try:
self._domain = x.geometry
except:
self._domain = x
# Compute Lipschitz constant provided that domain is not None.
# Lipschitz constant depends on the GradientOperator, which is configured only if domain is not None
if self._L is None:
self.calculate_Lipschitz()
# initialise
t = 1
# dual variable - its content is overwritten during iterations
p1 = self.gradient.range_geometry().allocate(None)
p2 = self._get_p2()
tmp_q = p2.copy()
# multiply tau by -1 * regularisation_parameter here so it's not recomputed every iteration
# when tau is an array this is done inplace so reverted at the end
if isinstance(tau, Number):
tau_reg_neg = -self.regularisation_parameter * tau
else:
tau_reg_neg = tau
tau.multiply(-self.regularisation_parameter, out=tau_reg_neg)
should_return = False
if out is None:
should_return = True
out = self.gradient.domain_geometry().allocate(0)
for k in range(self.iterations):
t0 = t
self.gradient.adjoint(tmp_q, out=out)
out.sapyb(tau_reg_neg, x, 1.0, out=out)
self.projection_C(out, tau=None, out=out)
self.gradient.direct(out, out=p1)
multip = (-self.L)/tau_reg_neg
tmp_q.sapyb(1., p1, multip, out=tmp_q)
if self.tolerance is not None and k % 5 == 0:
p1 *= multip
error = p1.norm()
error /= tmp_q.norm()
if error < self.tolerance:
break
self.func.proximal_conjugate(tmp_q, 1.0, out=p1)
t = (1 + np.sqrt(1 + 4 * t0 ** 2)) / 2
p1.subtract(p2, out=tmp_q)
tmp_q *= (t0-1)/t
tmp_q += p1
# switch p1 and p2 references
tmp = p1
p1 = p2
p2 = tmp
if self.warm_start:
self._p2 = p2
if self.info:
if self.tolerance is not None:
logging.info(
"Stop at {} iterations with tolerance {} .".format(k, error))
else:
logging.info("Stop at {} iterations.".format(k))
# return tau to its original state if it was modified
if id(tau_reg_neg) == id(tau):
tau_reg_neg.divide(-self.regularisation_parameter, out=tau)
if should_return:
return out
def convex_conjugate(self, x):
r""" Returns the value of convex conjugate of the TotalVariation function at :code:`x` ."""
return 0.0
def calculate_Lipschitz(self):
r""" Default value for the Lipschitz constant."""
# Compute the Lipschitz parameter from the operator if possible
# Leave it initialised to None otherwise
self._L = (1./self.gradient.norm())**2
@property
def gradient(self):
r""" GradientOperator is created if it is not instantiated yet. The domain of the `_gradient`,
is created in the `__call__` and `proximal` methods.
"""
if self._domain is not None:
self._gradient = GradientOperator(
self._domain, correlation=self.correlation, backend=self.backend)
else:
raise ValueError(
" The domain of the TotalVariation is {}. Please use the __call__ or proximal methods first before calling gradient.".format(self._domain))
return self._gradient
def __rmul__(self, scalar):
if not isinstance(scalar, Number):
raise TypeError(
"scalar: Expected a number, got {}".format(type(scalar)))
self.regularisation_parameter *= scalar
return self |