File size: 10,078 Bytes
3c25306
 
 
 
 
 
aa8d0d0
 
024ad0c
3c25306
 
 
220daab
 
aa8d0d0
220daab
aa8d0d0
220daab
aa8d0d0
 
220daab
 
 
 
 
 
 
 
 
 
 
aa8d0d0
220daab
aa8d0d0
220daab
 
024ad0c
aa8d0d0
220daab
 
aa8d0d0
 
220daab
aa8d0d0
220daab
 
 
aa8d0d0
220daab
 
 
aa8d0d0
220daab
 
aa8d0d0
220daab
 
 
 
 
 
 
 
 
 
 
 
aa8d0d0
220daab
 
 
 
aa8d0d0
220daab
aa8d0d0
220daab
 
aa8d0d0
 
220daab
 
aa8d0d0
220daab
 
 
 
 
 
 
aa8d0d0
220daab
 
 
aa8d0d0
 
 
3c25306
220daab
3c25306
220daab
4d4378a
024ad0c
aa8d0d0
3c25306
220daab
 
024ad0c
220daab
024ad0c
220daab
 
aa8d0d0
3c25306
220daab
 
3c25306
220daab
 
aa8d0d0
3c25306
220daab
 
3c25306
220daab
 
3c25306
220daab
 
aa8d0d0
220daab
 
aa8d0d0
220daab
aa8d0d0
220daab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8d0d0
220daab
 
 
 
 
aa8d0d0
3c25306
aa8d0d0
3c25306
 
 
 
 
220daab
 
 
3c25306
 
 
220daab
 
 
aa8d0d0
220daab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8d0d0
3c25306
aa8d0d0
220daab
 
 
 
 
 
 
 
3c25306
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
import matplotlib.pyplot as plt
import io, base64
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from sklearn.decomposition import PCA
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import euclidean_distances
import time

app = FastAPI()

class AdaptiveVectorSystem:
    def _calculate_score(self, target, constituents):
        """
        Generates a score (-1.0 to 10.0) representing convergence 'effort'.
        """
        if len(constituents) == 0:
            return -1.0
            
        # Calculate distances from the calculated center to the points used
        dists = np.linalg.norm(constituents - target, axis=1)
        
        # Mean distance (how far usually)
        mean_dist = np.mean(dists)
        # Standard Deviation (how chaotic/scattered)
        std_dev = np.std(dists)
        
        # Heuristic: We want a high score for Low Mean and Low Std Dev.
        # We normalize based on the mean_dist itself to make it scale-invariant.
        # If std_dev is high relative to mean_dist, score drops.
        
        variation_coefficient = (std_dev / (mean_dist + 1e-9))
        
        # Base score starts at 10
        # We penalize for high variation (chaos) and raw distance
        penalty = (variation_coefficient * 6.0) + (mean_dist * 0.1)
        
        score = 10.0 - penalty
        return max(-1.0, min(10.0, score))

    def predict_point(self, vectors, mode='global'):
        data = np.array(vectors)
        
        # --- GLOBAL MODE ---
        # "Force a fit for everyone." 
        # Great for converged data, terrible for split data.
        if mode == 'global':
            center = np.mean(data, axis=0)
            score = self._calculate_score(center, data)
            return center, score, data

        # --- CLUSTER MODE ---
        # "Find the strongest gravity well."
        elif mode == 'cluster':
            # 1. Compute Pairwise Distances to understand the "Scale" of the data
            dist_matrix = euclidean_distances(data, data)
            # Flatten matrix and remove zeros (self-distance) to get average spacing
            all_dists = dist_matrix[np.triu_indices(len(data), k=1)]
            avg_global_dist = np.mean(all_dists)
            
            # 2. DYNAMIC THRESHOLDING
            # We say: To belong to a group, points must be significantly closer 
            # than the global average. (e.g., 0.6 * average)
            dynamic_thresh = avg_global_dist * 0.65 
            
            # 3. Cluster with this dynamic threshold
            clusterer = AgglomerativeClustering(
                n_clusters=None,
                metric='euclidean',
                linkage='ward',
                distance_threshold=dynamic_thresh
            )
            labels = clusterer.fit_predict(data)
            
            # 4. Find the "Best" Cluster
            # We look for the Largest cluster, but we ignore "Noise" (clusters of size 1 or 2)
            unique_labels, counts = np.unique(labels, return_counts=True)
            
            # Filter out tiny clusters (noise)
            valid_clusters = [l for l, c in zip(unique_labels, counts) if c > 2]
            
            if not valid_clusters:
                # Fallback if everything is noise: treat everything as one group
                return self.predict_point(data, mode='global')
                
            # Pick largest of the valid clusters
            # (You could also pick the 'densest' here, but largest is usually safest)
            best_label = max(valid_clusters, key=lambda l: counts[np.where(unique_labels == l)][0])
            
            # 5. Extract Data
            cluster_vectors = data[labels == best_label]
            center = np.mean(cluster_vectors, axis=0)
            score = self._calculate_score(center, cluster_vectors)
            
            return center, score, cluster_vectors

# --- VISUALIZATION LOGIC ---
def generate_plot(mode='global', scenario='split'):
    # Generate 128-dimension vectors
    np.random.seed(int(time.time())
                  ) # Consistent seed for demo
    
    if scenario == 'split':
        # Create two dense islands far apart
        # Island 1: centered at 0
        c1 = np.random.normal(0, 0.5, (100, 128))
        # Island 2: centered at 10 (In 128D, distance approx sqrt(128*100) = ~113 units away)
        c2 = np.random.normal(8, 0.5, (100, 128))
        # Noise: Random scatter
        noise = np.random.uniform(-5, 15, (10, 128))
        data = np.vstack([c1, c2, noise])
    else:
        # One Tight Cluster
        data = np.random.normal(0, 1.0, (50, 128))

    # Run System
    sys = AdaptiveVectorSystem()
    center_vec, score, used_vectors = sys.predict_point(data, mode)

    # PCA for 2D View
    # Important: Fit PCA on Input + Center so they share the same coordinate space
    pca = PCA(n_components=2)
    all_points = np.vstack([data, center_vec])
    projected = pca.fit_transform(all_points)
    
    pts_2d = projected[:-1]
    center_2d = projected[-1]

    # --- Plotting ---
    plt.figure(figsize=(7, 5), facecolor='#202020')
    ax = plt.gca()
    ax.set_facecolor('#303030')
    
    # Logic to identify which points were used (for coloring)
    # We compare the rows of 'used_vectors' to 'data' to find indices
    # Note: In production, pass indices around. For demo, we do a quick check.
    is_used = np.zeros(len(data), dtype=bool)
    
    # A quick way to mask used vectors using broadcasting approximation
    # (Since floats are tricky, we assume exact match from the split)
    if mode == 'global':
        is_used[:] = True
    else:
        # Brute force match for visualization accuracy
        for uv in used_vectors:
            for i, dv in enumerate(data):
                if np.array_equal(uv, dv):
                    is_used[i] = True
                    break

    # 1. Plot IGNORED points (Grey, transparent)
    if not np.all(is_used):
        plt.scatter(pts_2d[~is_used, 0], pts_2d[~is_used, 1], 
                   c='#555555', alpha=0.3, s=30, label='Ignored (Noise/Other)')

    # 2. Plot USED points (Bright Cyan)
    plt.scatter(pts_2d[is_used, 0], pts_2d[is_used, 1], 
               c='#00e5ff', alpha=0.8, s=40, edgecolors='none', label='Constituent Inputs')

    # 3. Draw "Gravity Lines" (faint lines from used points to center)
    # Only draw lines if there aren't too many points, to keep it clean
    if np.sum(is_used) < 100:
        for pt in pts_2d[is_used]:
            plt.plot([pt[0], center_2d[0]], [pt[1], center_2d[1]], 
                    c='#00e5ff', alpha=0.15, linewidth=1)

    # 4. Plot The PREDICTED POINT (Red X)
    plt.scatter(center_2d[0], center_2d[1], 
               c='#ff3366', s=200, marker='X', edgecolors='white', linewidth=1.5, 
               label='Generated Vector', zorder=10)

    # Styling
    plt.title(f"Mode: {mode.upper()} | Score: {score:.2f}/10", color='white', fontsize=12, pad=10)
    plt.grid(True, color='#444444', linestyle='--', alpha=0.5)
    
    # Legend formatting
    leg = plt.legend(facecolor='#303030', edgecolor='#555555', fontsize=8, loc='best')
    for text in leg.get_texts():
        text.set_color("white")

    # Axis colors
    ax.tick_params(axis='x', colors='white')
    ax.tick_params(axis='y', colors='white')
    for spine in ax.spines.values():
        spine.set_edgecolor('#555555')

    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight')
    plt.close()
    return base64.b64encode(buf.getvalue()).decode('utf-8')

@app.get("/", response_class=HTMLResponse)
async def root():
    img_global = generate_plot('global', 'split')
    img_cluster = generate_plot('cluster', 'split')
    img_tight = generate_plot('global', 'tight')
    
    return f"""
    <html>
        <body style="font-family: 'Segoe UI', sans-serif; background:#121212; color:#e0e0e0; text-align:center; padding:20px;">
            <h1 style="margin-bottom:10px;">Vector Convergence System</h1>
            <p style="color:#888; margin-bottom:40px;">Dynamic Thresholding Algorithm</p>
            
            <div style="display:flex; flex-wrap:wrap; justify-content:center; gap:20px;">
                <!-- SCENARIO A -->
                <div style="background:#1e1e1e; padding:20px; border-radius:12px; border:1px solid #333;">
                    <h2 style="color:#aaa; border-bottom:1px solid #333; padding-bottom:10px;">Scenario: Split Data</h2>
                    <div style="display:flex; gap:20px;">
                        <div>
                            <h3 style="color:#00e5ff;">Global Mode</h3>
                            <div style="font-size:0.8em; color:#888; margin-bottom:5px;">Averages everything (Score -1 to 2)</div>
                            <img src="data:image/png;base64,{img_global}" width="400" style="border-radius:8px;"/>
                        </div>
                        <div>
                            <h3 style="color:#ff3366;">Cluster Mode (Revised)</h3>
                            <div style="font-size:0.8em; color:#888; margin-bottom:5px;">Identifies largest mass (Score 8 to 10)</div>
                            <img src="data:image/png;base64,{img_cluster}" width="400" style="border-radius:8px;"/>
                        </div>
                    </div>
                </div>

                <!-- SCENARIO B -->
                <div style="background:#1e1e1e; padding:20px; border-radius:12px; border:1px solid #333;">
                    <h2 style="color:#aaa; border-bottom:1px solid #333; padding-bottom:10px;">Scenario: Converged Data</h2>
                    <div>
                        <h3 style="color:#00e5ff;">Global Mode</h3>
                         <div style="font-size:0.8em; color:#888; margin-bottom:5px;">Efficient calculation (Score ~10)</div>
                        <img src="data:image/png;base64,{img_tight}" width="400" style="border-radius:8px;"/>
                    </div>
                </div>
            </div>
        </body>
    </html>
    """