Spaces:
Sleeping
Sleeping
File size: 28,107 Bytes
347d1a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
"""
Geometric computation utilities.
This module handles:
- Finger axis estimation (PCA and landmark-based)
- Ring-wearing zone localization
- Cross-section width measurement
- Coordinate transformations
"""
import logging
import cv2
import numpy as np
from typing import Tuple, List, Optional, Dict, Any, Literal
from .geometry_constants import (
MIN_LANDMARK_SPACING_PX,
MIN_FINGER_LENGTH_PX,
EPSILON,
MIN_MASK_POINTS_FOR_PCA,
ENDPOINT_SAMPLE_DISTANCE_FACTOR,
DEFAULT_ZONE_START_PCT,
DEFAULT_ZONE_END_PCT,
ANATOMICAL_ZONE_WIDTH_FACTOR,
MIN_DETERMINANT_FOR_INTERSECTION,
)
logger = logging.getLogger(__name__)
# Type for axis estimation method
AxisMethod = Literal["auto", "landmarks", "pca"]
def _validate_landmark_quality(landmarks: np.ndarray) -> Tuple[bool, str]:
"""
Validate quality of finger landmarks for axis estimation.
Args:
landmarks: 4x2 array of finger landmarks [MCP, PIP, DIP, TIP]
Returns:
Tuple of (is_valid, reason)
"""
if landmarks is None or len(landmarks) != 4:
return False, "landmarks_missing_or_incomplete"
# Check for NaN or infinite values
if not np.all(np.isfinite(landmarks)):
return False, "landmarks_contain_invalid_values"
# Check reasonable spacing (landmarks not collapsed)
# Calculate distances between consecutive landmarks
distances = []
for i in range(len(landmarks) - 1):
dist = np.linalg.norm(landmarks[i + 1] - landmarks[i])
distances.append(dist)
# Check if any distance is too small (collapsed landmarks)
min_distance = min(distances)
if min_distance < MIN_LANDMARK_SPACING_PX:
return False, "landmarks_too_close"
# Check for monotonically increasing progression (no crossovers)
# Calculate overall direction from MCP to TIP
overall_direction = landmarks[3] - landmarks[0]
overall_length = np.linalg.norm(overall_direction)
if overall_length < MIN_FINGER_LENGTH_PX:
return False, "finger_too_short"
overall_direction = overall_direction / overall_length
# Project each landmark onto overall direction
# They should be monotonically increasing from MCP to TIP
projections = []
for i in range(len(landmarks)):
proj = np.dot(landmarks[i] - landmarks[0], overall_direction)
projections.append(proj)
# Check monotonic increase
for i in range(len(projections) - 1):
if projections[i + 1] <= projections[i]:
return False, "landmarks_not_monotonic"
return True, "valid"
def estimate_finger_axis_from_landmarks(
landmarks: np.ndarray,
method: str = "linear_fit"
) -> Dict[str, Any]:
"""
Calculate finger axis directly from anatomical landmarks.
OPTIMIZED: Focuses on DIP-PIP segment (ring-wearing zone) for better accuracy.
Args:
landmarks: 4x2 array of finger landmarks [MCP, PIP, DIP, TIP]
method: Calculation method
- "endpoints": MCP to TIP vector (legacy, less accurate)
- "linear_fit": DIP to PIP vector (DEFAULT, optimized for ring measurements)
- "median_direction": Median of 3 segment directions (robust to outliers)
Returns:
Dictionary containing:
- center: Axis center point at midpoint of PIP-DIP (x, y)
- direction: Unit direction vector (dx, dy) from PIP to DIP
- length: Full finger length in pixels (TIP to MCP, for reference)
- palm_end: Visualization endpoint (extended from PIP toward palm)
- tip_end: Visualization endpoint (extended from DIP toward tip)
- method: Method used ("landmarks")
"""
# Validate landmarks
is_valid, reason = _validate_landmark_quality(landmarks)
if not is_valid:
raise ValueError(f"Invalid landmarks for axis estimation: {reason}")
# Extract landmark positions
mcp = landmarks[0] # Metacarpophalangeal joint (knuckle, palm-side)
pip = landmarks[1] # Proximal interphalangeal joint
dip = landmarks[2] # Distal interphalangeal joint
tip = landmarks[3] # Fingertip
# Calculate direction based on method
# OPTIMIZED: Focus on DIP-PIP segment (ring-wearing zone)
if method == "endpoints":
# Simple: vector from MCP to TIP (legacy, less accurate for ring zone)
direction = tip - mcp
direction_length = np.linalg.norm(direction)
direction = direction / direction_length
elif method == "linear_fit":
# OPTIMIZED: Use only DIP and PIP (most relevant for ring measurements)
# These two joints define the proximal phalanx where rings are worn
direction = dip - pip # Vector from PIP to DIP
direction_length = np.linalg.norm(direction)
direction = direction / direction_length
# Ensure direction points from palm to tip (PIP to DIP)
# Direction should already be correct, but verify
if np.dot(direction, tip - mcp) < 0:
direction = -direction
elif method == "median_direction":
# Robust to outliers: median of segment directions
# Calculate direction vectors for each segment
seg1_dir = (pip - mcp) / np.linalg.norm(pip - mcp)
seg2_dir = (dip - pip) / np.linalg.norm(dip - pip)
seg3_dir = (tip - dip) / np.linalg.norm(tip - dip)
# Take median of each component
directions = np.array([seg1_dir, seg2_dir, seg3_dir])
median_dir = np.median(directions, axis=0)
direction = median_dir / np.linalg.norm(median_dir)
else:
raise ValueError(f"Unknown method: {method}. Use 'endpoints', 'linear_fit', or 'median_direction'")
# OPTIMIZED: Center at midpoint of DIP and PIP (ring zone focus)
center = (pip + dip) / 2.0
# Calculate finger length (still use full finger for reference)
length = np.linalg.norm(tip - mcp)
# OPTIMIZED: Visual endpoints are DIP and PIP (ring zone segment)
# Extended slightly for visualization clarity
segment_length = np.linalg.norm(dip - pip)
extension_factor = 0.5 # Extend 50% beyond each endpoint for visualization
palm_end = pip - direction * (segment_length * extension_factor)
tip_end = dip + direction * (segment_length * extension_factor)
return {
"center": center.astype(np.float32),
"direction": direction.astype(np.float32),
"length": float(length),
"palm_end": palm_end.astype(np.float32),
"tip_end": tip_end.astype(np.float32),
"method": "landmarks",
}
def _estimate_axis_pca(
mask: np.ndarray,
landmarks: Optional[np.ndarray] = None,
) -> Dict[str, Any]:
"""
Estimate finger axis using PCA on mask points.
This is the original v0 implementation, now refactored as a helper function.
Args:
mask: Binary finger mask
landmarks: Optional finger landmarks for orientation (4x2 array)
Returns:
Dictionary containing axis data with method="pca"
Keys: center, direction, length, palm_end, tip_end, method
"""
# Get all non-zero points in the mask
points = np.column_stack(np.where(mask > 0)) # Returns (row, col) i.e., (y, x)
points = points[:, [1, 0]] # Convert to (x, y) format
if len(points) < MIN_MASK_POINTS_FOR_PCA:
raise ValueError("Not enough points in mask for axis estimation")
# Calculate center (centroid)
center = np.mean(points, axis=0)
# Center the points
centered = points - center
# Compute covariance matrix
cov = np.cov(centered.T)
# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eigh(cov)
# Principal axis is the eigenvector with largest eigenvalue
principal_idx = np.argmax(eigenvalues)
direction = eigenvectors[:, principal_idx]
# Ensure direction is a unit vector
direction = direction / np.linalg.norm(direction)
# Project all points onto the principal axis to find endpoints
projections = np.dot(centered, direction)
min_proj = np.min(projections)
max_proj = np.max(projections)
# Calculate finger length
length = max_proj - min_proj
# Calculate endpoints along the axis
endpoint1 = center + direction * min_proj
endpoint2 = center + direction * max_proj
# Determine which endpoint is palm vs tip
# If landmarks are provided, use them for orientation
if landmarks is not None and len(landmarks) == 4:
# landmarks[0] is MCP (palm side), landmarks[3] is tip
base_point = landmarks[0]
tip_point = landmarks[3]
# Determine which endpoint is closer to the base
dist1_to_base = np.linalg.norm(endpoint1 - base_point)
dist2_to_base = np.linalg.norm(endpoint2 - base_point)
if dist1_to_base < dist2_to_base:
palm_end = endpoint1
tip_end = endpoint2
else:
palm_end = endpoint2
tip_end = endpoint1
direction = -direction # Flip direction to point from palm to tip
else:
# Without landmarks, use heuristic: tip is usually thinner
# Sample points near each endpoint
sample_distance = length * ENDPOINT_SAMPLE_DISTANCE_FACTOR
# Points near endpoint1
near_ep1 = points[np.abs(projections - min_proj) < sample_distance]
# Points near endpoint2
near_ep2 = points[np.abs(projections - max_proj) < sample_distance]
# Calculate average distance from axis for each end (proxy for thickness)
if len(near_ep1) > 0 and len(near_ep2) > 0:
# Project distances perpendicular to axis
perp_direction = np.array([-direction[1], direction[0]])
dist1 = np.mean(np.abs(np.dot(near_ep1 - center, perp_direction)))
dist2 = np.mean(np.abs(np.dot(near_ep2 - center, perp_direction)))
# Thinner end is likely the tip
if dist1 < dist2:
palm_end = endpoint2
tip_end = endpoint1
direction = -direction
else:
palm_end = endpoint1
tip_end = endpoint2
else:
# Fallback: assume endpoint2 is tip (positive direction)
palm_end = endpoint1
tip_end = endpoint2
return {
"center": center.astype(np.float32),
"direction": direction.astype(np.float32),
"length": float(length),
"palm_end": palm_end.astype(np.float32),
"tip_end": tip_end.astype(np.float32),
"method": "pca",
}
def estimate_finger_axis(
mask: np.ndarray,
landmarks: Optional[np.ndarray] = None,
method: AxisMethod = "auto",
landmark_method: str = "linear_fit",
) -> Dict[str, Any]:
"""
Estimate the principal axis of a finger using landmarks (preferred) or PCA (fallback).
v1 Enhancement: Now supports landmark-based axis estimation for improved accuracy
on bent fingers. Auto mode (default) uses landmarks when available and valid,
falling back to PCA if needed.
Args:
mask: Binary finger mask
landmarks: Optional finger landmarks (4x2 array: [MCP, PIP, DIP, TIP])
method: Axis estimation method
- "auto": Use landmarks if available and valid, else PCA (recommended)
- "landmarks": Force landmark-based (fails if landmarks invalid)
- "pca": Force PCA-based (v0 behavior)
landmark_method: Method for landmark-based estimation
("endpoints", "linear_fit", "median_direction")
Returns:
Dictionary containing:
- center: Axis center point (x, y)
- direction: Unit direction vector (dx, dy) pointing from palm to tip
- length: Estimated finger length in pixels
- palm_end: Palm-side endpoint
- tip_end: Fingertip endpoint
- method: Method actually used ("landmarks" or "pca")
"""
if method == "pca":
# Force PCA method
return _estimate_axis_pca(mask, landmarks)
elif method == "landmarks":
# Force landmark method (fail if landmarks invalid)
if landmarks is None or len(landmarks) != 4:
raise ValueError("Landmark method requested but landmarks not available")
return estimate_finger_axis_from_landmarks(landmarks, method=landmark_method)
elif method == "auto":
# Auto mode: try landmarks first, fall back to PCA
try:
# Check if landmarks are available and valid
if landmarks is not None and len(landmarks) == 4:
is_valid, reason = _validate_landmark_quality(landmarks)
if is_valid:
# Use landmark-based method
logger.debug(f"Using landmark-based axis estimation ({landmark_method})")
return estimate_finger_axis_from_landmarks(landmarks, method=landmark_method)
else:
logger.debug(f"Landmarks available but quality check failed: {reason}")
logger.debug("Falling back to PCA axis estimation")
else:
logger.debug("Landmarks not available, using PCA axis estimation")
except Exception as e:
logger.debug(f"Landmark-based axis estimation failed: {e}")
logger.debug("Falling back to PCA axis estimation")
# Fall back to PCA
return _estimate_axis_pca(mask, landmarks)
else:
raise ValueError(f"Unknown method: {method}. Use 'auto', 'landmarks', or 'pca'")
def localize_ring_zone(
axis_data: Dict[str, Any],
zone_start_pct: float = DEFAULT_ZONE_START_PCT,
zone_end_pct: float = DEFAULT_ZONE_END_PCT,
) -> Dict[str, Any]:
"""
Localize the ring-wearing zone along the finger axis.
Args:
axis_data: Output from estimate_finger_axis() containing center,
direction, length, palm_end, tip_end
zone_start_pct: Zone start as percentage from palm (default 15%)
zone_end_pct: Zone end as percentage from palm (default 25%)
Returns:
Dictionary containing:
- start_point: Zone start position (x, y)
- end_point: Zone end position (x, y)
- center_point: Zone center position (x, y)
- length: Zone length in pixels
- start_pct: Start percentage used
- end_pct: End percentage used
- localization_method: "percentage"
"""
# Extract axis information
palm_end = axis_data["palm_end"]
tip_end = axis_data["tip_end"]
direction = axis_data["direction"]
finger_length = axis_data["length"]
# Calculate zone positions along the axis
# Start at zone_start_pct from palm end
start_distance = finger_length * zone_start_pct
start_point = palm_end + direction * start_distance
# End at zone_end_pct from palm end
end_distance = finger_length * zone_end_pct
end_point = palm_end + direction * end_distance
# Calculate zone center
center_point = (start_point + end_point) / 2.0
# Zone length
zone_length = end_distance - start_distance
return {
"start_point": start_point.astype(np.float32),
"end_point": end_point.astype(np.float32),
"center_point": center_point.astype(np.float32),
"length": float(zone_length),
"start_pct": zone_start_pct,
"end_pct": zone_end_pct,
"localization_method": "percentage",
}
def localize_ring_zone_from_landmarks(
landmarks: np.ndarray,
axis_data: Dict[str, Any],
zone_type: str = "percentage",
zone_start_pct: float = DEFAULT_ZONE_START_PCT,
zone_end_pct: float = DEFAULT_ZONE_END_PCT,
) -> Dict[str, Any]:
"""
Localize ring-wearing zone using anatomical landmarks.
v1 Enhancement: Provides anatomical-based ring zone localization
as an alternative to percentage-based approach.
Args:
landmarks: 4x2 array of finger landmarks [MCP, PIP, DIP, TIP]
axis_data: Output from estimate_finger_axis() containing center,
direction, length, palm_end, tip_end
zone_type: Zone localization method
- "percentage": 15-25% from palm (v0 compatible, default)
- "anatomical": Centered on PIP joint with proportional width
zone_start_pct: Zone start percentage (percentage mode only)
zone_end_pct: Zone end percentage (percentage mode only)
Returns:
Dictionary containing:
- start_point: Zone start position (x, y)
- end_point: Zone end position (x, y)
- center_point: Zone center position (x, y)
- length: Zone length in pixels
- localization_method: "percentage" or "anatomical"
"""
if zone_type == "percentage":
# Use percentage-based method (v0 compatible)
result = localize_ring_zone(axis_data, zone_start_pct, zone_end_pct)
return result
elif zone_type == "anatomical":
# Anatomical mode: Target the proximal phalanx (ring-wearing segment)
# Upper bound: PIP joint (toward fingertip)
# Lower bound: PIP - (DIP - PIP) = one segment length below PIP (toward palm)
# This spans the proximal phalanx where rings are typically worn
pip = landmarks[1]
dip = landmarks[2]
# Calculate segment length (DIP to PIP distance)
segment_vector = dip - pip # Vector from PIP to DIP
# Ring zone spans from PIP down toward palm by one segment length
# end_point is toward fingertip (PIP)
# start_point is toward palm (PIP - segment_vector = one segment below PIP)
end_point = pip.copy() # Upper bound at PIP
start_point = pip - segment_vector # Lower bound one segment below PIP
# Calculate zone center and length
center_point = (start_point + end_point) / 2.0
zone_length = np.linalg.norm(end_point - start_point)
return {
"start_point": start_point.astype(np.float32),
"end_point": end_point.astype(np.float32),
"center_point": center_point.astype(np.float32),
"length": float(zone_length),
"localization_method": "anatomical",
}
else:
raise ValueError(f"Unknown zone_type: {zone_type}. Use 'percentage' or 'anatomical'")
def compute_cross_section_width(
contour: np.ndarray,
axis_data: Dict[str, Any],
zone_data: Dict[str, Any],
num_samples: int = 20,
) -> Dict[str, Any]:
"""
Measure finger width by sampling cross-sections perpendicular to axis.
Args:
contour: Finger contour points (Nx2 array in x,y format)
axis_data: Output from estimate_finger_axis() containing center,
direction, length, palm_end, tip_end
zone_data: Output from localize_ring_zone() containing start_point,
end_point, center_point
num_samples: Number of cross-section samples (default 20)
Returns:
Dictionary containing:
- widths_px: List of width measurements in pixels
- sample_points: List of (left, right) intersection point tuples
- median_width_px: Median width in pixels
- std_width_px: Standard deviation of widths
- mean_width_px: Mean width in pixels
- num_samples: Actual number of successful measurements
"""
direction = axis_data["direction"]
start_point = zone_data["start_point"]
end_point = zone_data["end_point"]
# Perpendicular direction (rotate 90 degrees)
perp_direction = np.array([-direction[1], direction[0]], dtype=np.float32)
widths = []
sample_points_list = []
# Generate sample points along the zone
for i in range(num_samples):
# Interpolate between start and end
t = i / (num_samples - 1) if num_samples > 1 else 0.5
sample_center = start_point + t * (end_point - start_point)
# Find intersections with contour along perpendicular line
intersections = line_contour_intersections(
contour, sample_center, perp_direction
)
if len(intersections) >= 2:
# Convert to numpy array for distance calculations
pts = np.array(intersections)
# Find the two points that are farthest apart
# This handles cases where the line intersects multiple times
max_dist = 0
best_pair = None
for j in range(len(pts)):
for k in range(j + 1, len(pts)):
dist = np.linalg.norm(pts[j] - pts[k])
if dist > max_dist:
max_dist = dist
best_pair = (pts[j], pts[k])
if best_pair is not None:
widths.append(max_dist)
sample_points_list.append(best_pair)
if len(widths) == 0:
raise ValueError("No valid width measurements found in ring zone")
widths = np.array(widths)
# Calculate statistics
median_width = float(np.median(widths))
mean_width = float(np.mean(widths))
std_width = float(np.std(widths))
return {
"widths_px": widths.tolist(),
"sample_points": sample_points_list,
"median_width_px": median_width,
"mean_width_px": mean_width,
"std_width_px": std_width,
"num_samples": len(widths),
}
def line_contour_intersections(
contour: np.ndarray,
point: Tuple[float, float],
direction: Tuple[float, float],
) -> List[Tuple[float, float]]:
"""
Find intersection points between a line and a contour.
Uses parametric line-segment intersection to find where an infinite line
intersects with the contour edges.
Args:
contour: Contour points (Nx2 array in x,y format)
point: A point on the line (x, y)
direction: Line direction vector (dx, dy), will be normalized
Returns:
List of intersection points as (x, y) tuples
"""
intersections = []
# Normalize direction
direction = np.array(direction, dtype=np.float32)
direction = direction / (np.linalg.norm(direction) + EPSILON)
point = np.array(point, dtype=np.float32)
# Check each edge of the contour
n = len(contour)
for i in range(n):
p1 = contour[i]
p2 = contour[(i + 1) % n]
# Find intersection between line and edge segment
# Line: P = point + t * direction
# Segment: Q = p1 + s * (p2 - p1), where s ∈ [0, 1]
edge_vec = p2 - p1
# Solve: point + t * direction = p1 + s * edge_vec
# Rearranged: t * direction - s * edge_vec = p1 - point
# Create matrix [direction, -edge_vec] * [t, s]^T = p1 - point
A = np.column_stack([direction, -edge_vec])
b = p1 - point
# Check if matrix is singular (parallel lines)
det = A[0, 0] * A[1, 1] - A[0, 1] * A[1, 0]
if abs(det) < MIN_DETERMINANT_FOR_INTERSECTION:
continue
# Solve for t and s
try:
params = np.linalg.solve(A, b)
t, s = params[0], params[1]
# Check if intersection is on the edge segment (s ∈ [0, 1])
if 0 <= s <= 1:
intersection = point + t * direction
intersections.append(tuple(intersection))
except np.linalg.LinAlgError:
continue
return intersections
# ============================================================================
# Precise Image Rotation for Finger Alignment
# ============================================================================
def calculate_angle_from_vertical(direction: np.ndarray) -> float:
"""
Calculate the rotation needed to align a direction vector to vertical (upward).
In image coordinates, vertical upward is (0, -1) in (x, y) format.
Args:
direction: Unit direction vector (dx, dy) in (x, y) format
Returns:
Rotation angle in degrees to apply to align direction to vertical.
Positive = need to rotate counter-clockwise (CCW) in image coordinates.
Range: [-180, 180]
"""
# Vertical upward in image coordinates: (0, -1)
vertical = np.array([0.0, -1.0])
# Calculate angle using atan2(cross_product, dot_product)
# cross = dx * (-1) - dy * 0 = -dx
# dot = dx * 0 + dy * (-1) = -dy
cross = direction[0] * vertical[1] - direction[1] * vertical[0]
dot = np.dot(direction, vertical)
angle_rad = np.arctan2(cross, dot)
angle_deg = np.degrees(angle_rad)
# Negate the angle: if finger is tilted +10° CW from vertical,
# we need to rotate -10° (CCW) to straighten it
return -angle_deg
def rotate_image_precise(
image: np.ndarray,
angle_degrees: float,
center: Optional[Tuple[float, float]] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Rotate image by a precise angle around a center point.
Args:
image: Input image (grayscale or BGR)
angle_degrees: Rotation angle in degrees (positive = clockwise)
center: Rotation center (x, y). If None, uses image center.
Returns:
Tuple of:
- rotated_image: Rotated image (same size as input)
- rotation_matrix: 2x3 affine transformation matrix
"""
h, w = image.shape[:2]
if center is None:
center = (w / 2.0, h / 2.0)
# Get rotation matrix (OpenCV uses clockwise positive)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_degrees, scale=1.0)
# Apply rotation
rotated = cv2.warpAffine(
image, rotation_matrix, (w, h),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=0
)
return rotated, rotation_matrix
def transform_points_rotation(
points: np.ndarray,
rotation_matrix: np.ndarray
) -> np.ndarray:
"""
Transform points using a rotation matrix from cv2.getRotationMatrix2D.
Args:
points: Nx2 array of points in (x, y) format
rotation_matrix: 2x3 affine transformation matrix from cv2.getRotationMatrix2D
Returns:
Nx2 array of transformed points in (x, y) format
"""
# Add homogeneous coordinate (1) to each point: (x, y) -> (x, y, 1)
n_points = points.shape[0]
homogeneous = np.hstack([points, np.ones((n_points, 1))])
# Apply transformation: [2x3] @ [3xN]^T -> [2xN]^T
transformed = (rotation_matrix @ homogeneous.T).T
return transformed.astype(np.float32)
def rotate_axis_data(
axis_data: Dict[str, Any],
rotation_matrix: np.ndarray
) -> Dict[str, Any]:
"""
Update axis data after image rotation.
Args:
axis_data: Axis data dictionary with center, direction, palm_end, tip_end
rotation_matrix: 2x3 rotation matrix
Returns:
Updated axis data with transformed coordinates
"""
rotated = axis_data.copy()
# Transform center point
center = axis_data["center"].reshape(1, 2)
rotated["center"] = transform_points_rotation(center, rotation_matrix)[0]
# Transform direction vector (rotation only, no translation)
# For direction vectors, we only apply the rotation part (2x2)
rotation_only = rotation_matrix[:2, :2]
direction = axis_data["direction"].reshape(2, 1)
rotated_direction = (rotation_only @ direction).flatten()
rotated["direction"] = rotated_direction / np.linalg.norm(rotated_direction)
# Transform endpoints if they exist
if "palm_end" in axis_data:
palm_end = axis_data["palm_end"].reshape(1, 2)
rotated["palm_end"] = transform_points_rotation(palm_end, rotation_matrix)[0]
if "tip_end" in axis_data:
tip_end = axis_data["tip_end"].reshape(1, 2)
rotated["tip_end"] = transform_points_rotation(tip_end, rotation_matrix)[0]
return rotated
def rotate_contour(
contour: np.ndarray,
rotation_matrix: np.ndarray
) -> np.ndarray:
"""
Rotate a contour using rotation matrix.
Args:
contour: Nx2 array of contour points in (x, y) format
rotation_matrix: 2x3 rotation matrix
Returns:
Rotated contour in same format
"""
return transform_points_rotation(contour, rotation_matrix)
|