File size: 80,822 Bytes
9891cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: percent
#       format_version: '1.3'
#       jupytext_version: 1.17.1
#   kernelspec:
#     display_name: Python 3 (ipykernel)
#     language: python
#     name: python3
# ---

# %% [markdown]
"""
# Module 09: Convolutions - Processing Images with Convolutions

Welcome to Module 09! You'll implement spatial operations that transform machine learning from working with simple vectors to understanding images and spatial patterns.

## πŸ”— Prerequisites & Progress
**You've Built**: Complete training pipeline with MLPs, optimizers, and data loaders
**You'll Build**: Spatial operations - Conv2d, MaxPool2d, AvgPool2d for image processing
**You'll Enable**: Convolutional Neural Networks (CNNs) for computer vision

**Connection Map**:
```
Training Pipeline β†’ Spatial Operations β†’ CNN (Milestone 03)
    (MLPs)            (Conv/Pool)        (Computer Vision)
```

## 🎯 Learning Objectives
By the end of this module, you will:
1. Implement Conv2d with explicit loops to understand O(NΒ²MΒ²KΒ²) complexity
2. Build pooling operations (Max and Average) for spatial reduction
3. Understand receptive fields and spatial feature extraction
4. Analyze memory vs computation trade-offs in spatial operations

Let's get started!

## πŸ“¦ Where This Code Lives in the Final Package

**Learning Side:** You work in `modules/09_convolutions/convolutions_dev.py`
**Building Side:** Code exports to `tinytorch.core.spatial`

```python
# How to use this module:
from tinytorch.core.spatial import Conv2d, MaxPool2d, AvgPool2d
```

**Why this matters:**
- **Learning:** Complete spatial processing system in one focused module for deep understanding
- **Production:** Proper organization like PyTorch's torch.nn.Conv2d with all spatial operations together
- **Consistency:** All convolution and pooling operations in core.spatial
- **Integration:** Works seamlessly with existing layers for complete CNN architectures
"""

# %% nbgrader={"grade": false, "grade_id": "spatial-setup", "solution": true}


#| default_exp core.spatial

#| export
import numpy as np
import time

from tinytorch.core.tensor import Tensor

# Constants for convolution defaults
DEFAULT_KERNEL_SIZE = 3  # Default kernel size for convolutions
DEFAULT_STRIDE = 1  # Default stride for convolutions
DEFAULT_PADDING = 0  # Default padding for convolutions

# %% [markdown]
"""
## πŸ’‘ Introduction - What are Spatial Operations?

Spatial operations transform machine learning from working with simple vectors to understanding images and spatial patterns. When you look at a photo, your brain naturally processes spatial relationships - edges, textures, objects. Spatial operations give neural networks this same capability.

### The Two Core Spatial Operations

**Convolution**: Detects local patterns by sliding filters across the input
**Pooling**: Reduces spatial dimensions while preserving important features

### Visual Example: How Convolution Works

```
Input Image (5Γ—5):        Kernel (3Γ—3):        Output (3Γ—3):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1  2  3  4  5   β”‚      β”‚  1  0  -1 β”‚       β”‚ ?  ?  ? β”‚
β”‚ 6  7  8  9  0   β”‚  *   β”‚  1  0  -1 β”‚   =   β”‚ ?  ?  ? β”‚
β”‚ 1  2  3  4  5   β”‚      β”‚  1  0  -1 β”‚       β”‚ ?  ?  ? β”‚
β”‚ 6  7  8  9  0   β”‚      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ 1  2  3  4  5   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Sliding Window Process:
Position (0,0): [1,2,3]   Position (0,1): [2,3,4]   Position (0,2): [3,4,5]
               [6,7,8] *               [7,8,9] *               [8,9,0] *
               [1,2,3]                 [2,3,4]                 [3,4,5]
               = Output[0,0]           = Output[0,1]           = Output[0,2]
```

Each output pixel summarizes a local neighborhood, allowing the network to detect patterns like edges, corners, and textures.

### Why Spatial Operations Transform ML

```
Without Convolution:                    With Convolution:
32Γ—32Γ—3 image = 3,072 inputs          32Γ—32Γ—3 β†’ Conv β†’ 32Γ—32Γ—16
↓                                      ↓                     ↓
Dense(3072 β†’ 1000) = 3M parameters    Shared 3Γ—3 kernel = 432 parameters
↓                                      ↓                     ↓
Memory explosion + no spatial awareness Efficient + preserves spatial structure
```

Convolution achieves dramatic parameter reduction (1000Γ— fewer!) while preserving the spatial relationships that matter for visual understanding.
"""

# %% [markdown]
"""
## πŸ“ Mathematical Foundations

### Understanding Convolution Step by Step

Convolution sounds complex, but it's just "sliding window multiplication and summation." Let's see exactly how it works:

```
Step 1: Position the kernel over input
Input:          Kernel:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”
β”‚ 1 2 3 4 β”‚     β”‚ 1 0 β”‚  ← Place kernel at position (0,0)
β”‚ 5 6 7 8 β”‚  Γ—  β”‚ 0 1 β”‚
β”‚ 9 0 1 2 β”‚     β””β”€β”€β”€β”€β”€β”˜
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Step 2: Multiply corresponding elements
Overlap:        Computation:
β”Œβ”€β”€β”€β”€β”€β”         1Γ—1 + 2Γ—0 + 5Γ—0 + 6Γ—1 = 1 + 0 + 0 + 6 = 7
β”‚ 1 2 β”‚
β”‚ 5 6 β”‚
β””β”€β”€β”€β”€β”€β”˜

Step 3: Slide kernel and repeat
Position (0,1):  Position (1,0):  Position (1,1):
β”Œβ”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”
β”‚ 2 3 β”‚         β”‚ 5 6 β”‚          β”‚ 6 7 β”‚
β”‚ 6 7 β”‚         β”‚ 9 0 β”‚          β”‚ 0 1 β”‚
β””β”€β”€β”€β”€β”€β”˜         β””β”€β”€β”€β”€β”€β”˜          β””β”€β”€β”€β”€β”€β”˜
Result: 9       Result: 5        Result: 8

Final Output:   β”Œβ”€β”€β”€β”€β”€β”
               β”‚ 7 9 β”‚
               β”‚ 5 8 β”‚
               β””β”€β”€β”€β”€β”€β”˜
```

### The Mathematical Formula

For 2D convolution, we slide kernel K across input I:
```
O[i,j] = Ξ£ Ξ£ I[i+m, j+n] Γ— K[m,n]
         m n
```

This formula captures the "multiply and sum" operation for each kernel position.

### Pooling: Spatial Summarization

```
Max Pooling Example (2Γ—2 window):
Input:             Output:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1  3  2  4    β”‚  β”‚ 6   8 β”‚  ← max([1,3,5,6])=6, max([2,4,7,8])=8
β”‚ 5  6  7  8    β”‚  β”‚ 9   9 β”‚  ← max([5,2,9,1])=9, max([7,4,9,3])=9
β”‚ 2  9  1  3    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ 0  1  9  3    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Average Pooling (same window):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 3.75   5.25 β”‚  ← avg([1,3,5,6])=3.75, avg([2,4,7,8])=5.25
β”‚ 2.75   5.75 β”‚  ← avg([5,2,9,1])=4.25, avg([7,4,9,3])=5.75
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

### Why This Complexity Matters

For convolution with input (1, 3, 224, 224) and kernel (64, 3, 3, 3):
- **Operations**: 1 Γ— 64 Γ— 3 Γ— 3 Γ— 3 Γ— 224 Γ— 224 = 86.7 million multiply-adds
- **Memory**: Input (600KB) + Weights (6.9KB) + Output (12.8MB) = ~13.4MB

This is why kernel size matters enormously - a 7Γ—7 kernel would require 5.4Γ— more computation!

### Key Properties That Enable Deep Learning

**Translation Equivariance**: Move the cat β†’ detection moves the same way
**Parameter Sharing**: Same edge detector works everywhere in the image
**Local Connectivity**: Each output only looks at nearby inputs (like human vision)
**Hierarchical Features**: Early layers detect edges β†’ later layers detect objects
"""

# %% [markdown]
"""
## πŸ—οΈ Implementation - Building Spatial Operations

Now we'll implement convolution step by step, using explicit loops so you can see and feel the computational complexity. This helps you understand why modern optimizations matter!

### Conv2d: Detecting Patterns with Sliding Windows

Convolution slides a small filter (kernel) across the entire input, computing weighted sums at each position. Think of it like using a template to find matching patterns everywhere in an image.

```
Convolution Visualization:
Input (4Γ—4):              Kernel (3Γ—3):           Output (2Γ—2):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ a b c d β”‚            β”‚ k1 k2 k3β”‚             β”‚ o1  o2 β”‚
β”‚ e f g h β”‚     Γ—      β”‚ k4 k5 k6β”‚      =      β”‚ o3  o4 β”‚
β”‚ i j k l β”‚            β”‚ k7 k8 k9β”‚             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ m n o p β”‚            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Computation Details:
o1 = aΓ—k1 + bΓ—k2 + cΓ—k3 + eΓ—k4 + fΓ—k5 + gΓ—k6 + iΓ—k7 + jΓ—k8 + kΓ—k9
o2 = bΓ—k1 + cΓ—k2 + dΓ—k3 + fΓ—k4 + gΓ—k5 + hΓ—k6 + jΓ—k7 + kΓ—k8 + lΓ—k9
o3 = eΓ—k1 + fΓ—k2 + gΓ—k3 + iΓ—k4 + jΓ—k5 + kΓ—k6 + mΓ—k7 + nΓ—k8 + oΓ—k9
o4 = fΓ—k1 + gΓ—k2 + hΓ—k3 + jΓ—k4 + kΓ—k5 + lΓ—k6 + nΓ—k7 + oΓ—k8 + pΓ—k9
```

### The Six Nested Loops of Convolution

Our implementation will use explicit loops to show exactly where the computational cost comes from:

```
for batch in range(B):          # Loop 1: Process each sample
    for out_ch in range(C_out):     # Loop 2: Generate each output channel
        for out_h in range(H_out):      # Loop 3: Each output row
            for out_w in range(W_out):      # Loop 4: Each output column
                for k_h in range(K_h):          # Loop 5: Each kernel row
                    for k_w in range(K_w):          # Loop 6: Each kernel column
                        for in_ch in range(C_in):       # Loop 7: Each input channel
                            # The actual multiply-accumulate operation
                            result += input[...] * kernel[...]
```

Total operations: B Γ— C_out Γ— H_out Γ— W_out Γ— K_h Γ— K_w Γ— C_in

For typical values (B=32, C_out=64, H_out=224, W_out=224, K_h=3, K_w=3, C_in=3):
That's 32 Γ— 64 Γ— 224 Γ— 224 Γ— 3 Γ— 3 Γ— 3 = **2.8 billion operations** per forward pass!
"""

# %% [markdown]
"""
### Conv2d Implementation - Building the Core of Computer Vision

Conv2d is the workhorse of computer vision. It slides learned filters across images to detect patterns like edges, textures, and eventually complex objects.

#### How Conv2d Transforms Machine Learning

```
Before Conv2d (Dense Only):         After Conv2d (Spatial Aware):
Input: 32Γ—32Γ—3 = 3,072 values      Input: 32Γ—32Γ—3 structured as image
         ↓                                   ↓
Dense(3072β†’1000) = 3M params       Conv2d(3β†’16, 3Γ—3) = 448 params
         ↓                                   ↓
No spatial awareness               Preserves spatial relationships
Massive parameter count            Parameter sharing across space
```

#### Weight Initialization: He Initialization for ReLU Networks

Our Conv2d uses He initialization, specifically designed for ReLU activations:
- **Problem**: Wrong initialization β†’ vanishing/exploding gradients
- **Solution**: std = sqrt(2 / fan_in) where fan_in = channels Γ— kernel_height Γ— kernel_width
- **Why it works**: Maintains variance through ReLU nonlinearity

#### The 6-Loop Implementation Strategy

We'll implement convolution with explicit loops to show the true computational cost:

```
Nested Loop Structure:
for batch:           ← Process each sample in parallel (in practice)
  for out_channel:   ← Generate each output feature map
    for out_h:       ← Each row of output
      for out_w:     ← Each column of output
        for k_h:     ← Each row of kernel
          for k_w:   ← Each column of kernel
            for in_ch: ← Accumulate across input channels
              result += input[...] * weight[...]
```

This reveals why convolution is expensive: O(BΓ—C_outΓ—HΓ—WΓ—K_hΓ—K_wΓ—C_in) operations!
"""

# %% nbgrader={"grade": false, "grade_id": "conv2d-class", "solution": true}

#| export

class Conv2d:
    """
    2D Convolution layer for spatial feature extraction.

    Implements convolution with explicit loops to demonstrate
    computational complexity and memory access patterns.

    Args:
        in_channels: Number of input channels
        out_channels: Number of output feature maps
        kernel_size: Size of convolution kernel (int or tuple)
        stride: Stride of convolution (default: 1)
        padding: Zero-padding added to input (default: 0)
        bias: Whether to add learnable bias (default: True)
    """

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True):
        """
        Initialize Conv2d layer with proper weight initialization.

        TODO: Complete Conv2d initialization

        APPROACH:
        1. Store hyperparameters (channels, kernel_size, stride, padding)
        2. Initialize weights using He initialization for ReLU compatibility
        3. Initialize bias (if enabled) to zeros
        4. Use proper shapes: weight (out_channels, in_channels, kernel_h, kernel_w)

        WEIGHT INITIALIZATION:
        - He init: std = sqrt(2 / (in_channels * kernel_h * kernel_w))
        - This prevents vanishing/exploding gradients with ReLU

        HINT: Convert kernel_size to tuple if it's an integer
        """
        super().__init__()

        ### BEGIN SOLUTION
        self.in_channels = in_channels
        self.out_channels = out_channels

        # Handle kernel_size as int or tuple
        if isinstance(kernel_size, int):
            self.kernel_size = (kernel_size, kernel_size)
        else:
            self.kernel_size = kernel_size

        self.stride = stride
        self.padding = padding

        # He initialization for ReLU networks
        kernel_h, kernel_w = self.kernel_size
        fan_in = in_channels * kernel_h * kernel_w
        std = np.sqrt(2.0 / fan_in)

        # Weight shape: (out_channels, in_channels, kernel_h, kernel_w)
        self.weight = Tensor(np.random.normal(0, std,
                           (out_channels, in_channels, kernel_h, kernel_w)))

        # Bias initialization
        if bias:
            self.bias = Tensor(np.zeros(out_channels))
        else:
            self.bias = None
        ### END SOLUTION

    def forward(self, x):
        """
        Forward pass through Conv2d layer.

        TODO: Implement convolution with explicit loops

        APPROACH:
        1. Extract input dimensions and validate
        2. Calculate output dimensions
        3. Apply padding if needed
        4. Implement 6 nested loops for full convolution
        5. Add bias if present

        LOOP STRUCTURE:
        for batch in range(batch_size):
            for out_ch in range(out_channels):
                for out_h in range(out_height):
                    for out_w in range(out_width):
                        for k_h in range(kernel_height):
                            for k_w in range(kernel_width):
                                for in_ch in range(in_channels):
                                    # Accumulate: out += input * weight

        EXAMPLE:
        >>> conv = Conv2d(3, 16, kernel_size=3, padding=1)
        >>> x = Tensor(np.random.randn(2, 3, 32, 32))  # batch=2, RGB, 32x32
        >>> out = conv(x)
        >>> print(out.shape)  # Should be (2, 16, 32, 32)

        HINTS:
        - Handle padding by creating padded input array
        - Watch array bounds in inner loops
        - Accumulate products for each output position
        """
        ### BEGIN SOLUTION
        # Input validation and shape extraction
        if len(x.shape) != 4:
            raise ValueError(f"Expected 4D input (batch, channels, height, width), got {x.shape}")

        batch_size, in_channels, in_height, in_width = x.shape
        out_channels = self.out_channels
        kernel_h, kernel_w = self.kernel_size

        # Calculate output dimensions
        out_height = (in_height + 2 * self.padding - kernel_h) // self.stride + 1
        out_width = (in_width + 2 * self.padding - kernel_w) // self.stride + 1

        # Apply padding if needed
        if self.padding > 0:
            padded_input = np.pad(x.data,
                                ((0, 0), (0, 0), (self.padding, self.padding), (self.padding, self.padding)),
                                mode='constant', constant_values=0)
        else:
            padded_input = x.data

        # Initialize output
        output = np.zeros((batch_size, out_channels, out_height, out_width))

        # Explicit 6-nested loop convolution to show complexity
        for b in range(batch_size):
            for out_ch in range(out_channels):
                for out_h in range(out_height):
                    for out_w in range(out_width):
                        # Calculate input region for this output position
                        in_h_start = out_h * self.stride
                        in_w_start = out_w * self.stride

                        # Accumulate convolution result
                        conv_sum = 0.0
                        for k_h in range(kernel_h):
                            for k_w in range(kernel_w):
                                for in_ch in range(in_channels):
                                    # Get input and weight values
                                    input_val = padded_input[b, in_ch,
                                                           in_h_start + k_h,
                                                           in_w_start + k_w]
                                    weight_val = self.weight.data[out_ch, in_ch, k_h, k_w]

                                    # Accumulate
                                    conv_sum += input_val * weight_val

                        # Store result
                        output[b, out_ch, out_h, out_w] = conv_sum

        # Add bias if present
        if self.bias is not None:
            # Broadcast bias across spatial dimensions
            for out_ch in range(out_channels):
                output[:, out_ch, :, :] += self.bias.data[out_ch]

        return Tensor(output)
        ### END SOLUTION

    def parameters(self):
        """Return trainable parameters."""
        params = [self.weight]
        if self.bias is not None:
            params.append(self.bias)
        return params

    def __call__(self, x):
        """Enable model(x) syntax."""
        return self.forward(x)

# %% [markdown]
"""
### πŸ§ͺ Unit Test: Conv2d Implementation
This test validates our convolution implementation with different configurations.
**What we're testing**: Shape preservation, padding, stride effects
**Why it matters**: Convolution is the foundation of computer vision
**Expected**: Correct output shapes and reasonable value ranges
"""

# %% nbgrader={"grade": true, "grade_id": "test-conv2d", "locked": true, "points": 15}


def test_unit_conv2d():
    """πŸ”¬ Test Conv2d implementation with multiple configurations."""
    print("πŸ”¬ Unit Test: Conv2d...")

    # Test 1: Basic convolution without padding
    print("  Testing basic convolution...")
    conv1 = Conv2d(in_channels=3, out_channels=16, kernel_size=3)
    x1 = Tensor(np.random.randn(2, 3, 32, 32))
    out1 = conv1(x1)

    expected_h = (32 - 3) + 1  # 30
    expected_w = (32 - 3) + 1  # 30
    assert out1.shape == (2, 16, expected_h, expected_w), f"Expected (2, 16, 30, 30), got {out1.shape}"

    # Test 2: Convolution with padding (same size)
    print("  Testing convolution with padding...")
    conv2 = Conv2d(in_channels=3, out_channels=8, kernel_size=3, padding=1)
    x2 = Tensor(np.random.randn(1, 3, 28, 28))
    out2 = conv2(x2)

    # With padding=1, output should be same size as input
    assert out2.shape == (1, 8, 28, 28), f"Expected (1, 8, 28, 28), got {out2.shape}"

    # Test 3: Convolution with stride
    print("  Testing convolution with stride...")
    conv3 = Conv2d(in_channels=1, out_channels=4, kernel_size=3, stride=2)
    x3 = Tensor(np.random.randn(1, 1, 16, 16))
    out3 = conv3(x3)

    expected_h = (16 - 3) // 2 + 1  # 7
    expected_w = (16 - 3) // 2 + 1  # 7
    assert out3.shape == (1, 4, expected_h, expected_w), f"Expected (1, 4, 7, 7), got {out3.shape}"

    # Test 4: Parameter counting
    print("  Testing parameter counting...")
    conv4 = Conv2d(in_channels=64, out_channels=128, kernel_size=3, bias=True)
    params = conv4.parameters()

    # Weight: (128, 64, 3, 3) = 73,728 parameters
    # Bias: (128,) = 128 parameters
    # Total: 73,856 parameters
    weight_params = 128 * 64 * 3 * 3
    bias_params = 128
    total_params = weight_params + bias_params

    actual_weight_params = np.prod(conv4.weight.shape)
    actual_bias_params = np.prod(conv4.bias.shape) if conv4.bias is not None else 0
    actual_total = actual_weight_params + actual_bias_params

    assert actual_total == total_params, f"Expected {total_params} parameters, got {actual_total}"
    assert len(params) == 2, f"Expected 2 parameter tensors, got {len(params)}"

    # Test 5: No bias configuration
    print("  Testing no bias configuration...")
    conv5 = Conv2d(in_channels=3, out_channels=16, kernel_size=5, bias=False)
    params5 = conv5.parameters()
    assert len(params5) == 1, f"Expected 1 parameter tensor (no bias), got {len(params5)}"
    assert conv5.bias is None, "Bias should be None when bias=False"

    print("βœ… Conv2d works correctly!")

if __name__ == "__main__":
    test_unit_conv2d()

# %% [markdown]
"""
## πŸ—οΈ Pooling Operations - Spatial Dimension Reduction

Pooling operations compress spatial information while keeping the most important features. Think of them as creating "thumbnail summaries" of local regions.

### MaxPool2d: Keeping the Strongest Signals

Max pooling finds the strongest activation in each window, preserving sharp features like edges and corners.

```
MaxPool2d Example (2Γ—2 kernel, stride=2):
Input (4Γ—4):              Windows:               Output (2Γ—2):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1  3 β”‚ 2  8 β”‚          β”‚ 1 3 β”‚ 2 8 β”‚          β”‚ 6   8 β”‚
β”‚ 5  6 β”‚ 7  4 β”‚    β†’     β”‚ 5 6 β”‚ 7 4 β”‚    β†’     β”‚ 9   7 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€          β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€          β””β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ 2  9 β”‚ 1  7 β”‚          β”‚ 2 9 β”‚ 1 7 β”‚
β”‚ 0  1 β”‚ 3  6 β”‚          β”‚ 0 1 β”‚ 3 6 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜

Window Computations:
Top-left: max(1,3,5,6) = 6     Top-right: max(2,8,7,4) = 8
Bottom-left: max(2,9,0,1) = 9  Bottom-right: max(1,7,3,6) = 7
```

### AvgPool2d: Smoothing Local Features

Average pooling computes the mean of each window, creating smoother, more general features.

```
AvgPool2d Example (same 2Γ—2 kernel, stride=2):
Input (4Γ—4):              Output (2Γ—2):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1  3 β”‚ 2  8 β”‚          β”‚ 3.75   5.25 β”‚
β”‚ 5  6 β”‚ 7  4 β”‚    β†’     β”‚ 3.0    4.25 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ 2  9 β”‚ 1  7 β”‚
β”‚ 0  1 β”‚ 3  6 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Window Computations:
Top-left: (1+3+5+6)/4 = 3.75    Top-right: (2+8+7+4)/4 = 5.25
Bottom-left: (2+9+0+1)/4 = 3.0  Bottom-right: (1+7+3+6)/4 = 4.25
```

### Why Pooling Matters for Computer Vision

```
Memory Impact:
Input: 224Γ—224Γ—64 = 3.2M values    After 2Γ—2 pooling: 112Γ—112Γ—64 = 0.8M values
Memory reduction: 4Γ— less!         Computation reduction: 4Γ— less!

Information Trade-off:
βœ… Preserves important features     ⚠️ Loses fine spatial detail
βœ… Provides translation invariance  ⚠️ Reduces localization precision
βœ… Reduces overfitting             ⚠️ May lose small objects
```

### Sliding Window Pattern

Both pooling operations follow the same sliding window pattern:

```
Sliding 2Γ—2 window with stride=2:
Step 1:     Step 2:     Step 3:     Step 4:
β”Œβ”€β”€β”        β”Œβ”€β”€β”
β”‚β–“β–“β”‚        β”‚β–“β–“β”‚
β””β”€β”€β”˜        β””β”€β”€β”˜                   β”Œβ”€β”€β”        β”Œβ”€β”€β”
                                    β”‚β–“β–“β”‚        β”‚β–“β–“β”‚
                                    β””β”€β”€β”˜        β””β”€β”€β”˜

Non-overlapping windows β†’ Each input pixel used exactly once
Stride=2 β†’ Output dimensions halved in each direction
```

The key difference: MaxPool takes max(window), AvgPool takes mean(window).
"""

# %% [markdown]
"""
### MaxPool2d Implementation - Preserving Strong Features

MaxPool2d finds the strongest activation in each spatial window, creating a compressed representation that keeps the most important information.

#### Why Max Pooling Works for Computer Vision

```
Edge Detection Example:
Input Window (2Γ—2):         Max Pooling Result:
β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”
β”‚ 0.1 β”‚ 0.8 β”‚ ←  Strong edge signal
β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€
β”‚ 0.2 β”‚ 0.1 β”‚              Output: 0.8 (preserves edge)
β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜

Noise Reduction Example:
Input Window (2Γ—2):
β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”
β”‚ 0.9 β”‚ 0.1 β”‚ ←  Feature + noise
β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€
β”‚ 0.2 β”‚ 0.1 β”‚              Output: 0.9 (removes noise)
β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜
```

#### The Sliding Window Pattern

```
MaxPool with 2Γ—2 kernel, stride=2:

Input (4Γ—4):                Output (2Γ—2):
β”Œβ”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”
β”‚ a β”‚ b β”‚ c β”‚ d β”‚          β”‚max(a,bβ”‚max(c,dβ”‚
β”œβ”€β”€β”€β”Όβ”€β”€β”€β”Όβ”€β”€β”€β”Όβ”€β”€β”€β”€     β†’    β”‚   e,f)β”‚   g,h)β”‚
β”‚ e β”‚ f β”‚ g β”‚ h β”‚          β”œβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€
β”œβ”€β”€β”€β”Όβ”€β”€β”€β”Όβ”€β”€β”€β”Όβ”€β”€β”€β”€          β”‚max(i,jβ”‚max(k,lβ”‚
β”‚ i β”‚ j β”‚ k β”‚ l β”‚          β”‚   m,n)β”‚   o,p)β”‚
β”œβ”€β”€β”€β”Όβ”€β”€β”€β”Όβ”€β”€β”€β”Όβ”€β”€β”€β”€          β””β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ m β”‚ n β”‚ o β”‚ p β”‚
β””β”€β”€β”€β”΄β”€β”€β”€β”΄β”€β”€β”€β”΄β”€β”€β”€β”˜

Benefits:
βœ“ Translation invariance (cat moved 1 pixel still detected)
βœ“ Computational efficiency (4Γ— fewer values to process)
βœ“ Hierarchical feature building (next layer sees larger receptive field)
```

#### Memory and Computation Impact

For input (1, 64, 224, 224) with 2Γ—2 pooling:
- **Input memory**: 64 Γ— 224 Γ— 224 Γ— 4 bytes = 12.8 MB
- **Output memory**: 64 Γ— 112 Γ— 112 Γ— 4 bytes = 3.2 MB
- **Memory reduction**: 4Γ— less memory needed
- **Computation**: No parameters, minimal compute cost
"""

# %% nbgrader={"grade": false, "grade_id": "maxpool2d-class", "solution": true}

#| export

class MaxPool2d:
    """
    2D Max Pooling layer for spatial dimension reduction.

    Applies maximum operation over spatial windows, preserving
    the strongest activations while reducing computational load.

    Args:
        kernel_size: Size of pooling window (int or tuple)
        stride: Stride of pooling operation (default: same as kernel_size)
        padding: Zero-padding added to input (default: 0)
    """

    def __init__(self, kernel_size, stride=None, padding=0):
        """
        Initialize MaxPool2d layer.

        TODO: Store pooling parameters

        APPROACH:
        1. Convert kernel_size to tuple if needed
        2. Set stride to kernel_size if not provided (non-overlapping)
        3. Store padding parameter

        HINT: Default stride equals kernel_size for non-overlapping windows
        """
        super().__init__()

        ### BEGIN SOLUTION
        # Handle kernel_size as int or tuple
        if isinstance(kernel_size, int):
            self.kernel_size = (kernel_size, kernel_size)
        else:
            self.kernel_size = kernel_size

        # Default stride equals kernel_size (non-overlapping)
        if stride is None:
            self.stride = self.kernel_size[0]
        else:
            self.stride = stride

        self.padding = padding
        ### END SOLUTION

    def forward(self, x):
        """
        Forward pass through MaxPool2d layer.

        TODO: Implement max pooling with explicit loops

        APPROACH:
        1. Extract input dimensions
        2. Calculate output dimensions
        3. Apply padding if needed
        4. Implement nested loops for pooling windows
        5. Find maximum value in each window

        LOOP STRUCTURE:
        for batch in range(batch_size):
            for channel in range(channels):
                for out_h in range(out_height):
                    for out_w in range(out_width):
                        # Find max in window [in_h:in_h+k_h, in_w:in_w+k_w]
                        max_val = -infinity
                        for k_h in range(kernel_height):
                            for k_w in range(kernel_width):
                                max_val = max(max_val, input[...])

        EXAMPLE:
        >>> pool = MaxPool2d(kernel_size=2, stride=2)
        >>> x = Tensor(np.random.randn(1, 3, 8, 8))
        >>> out = pool(x)
        >>> print(out.shape)  # Should be (1, 3, 4, 4)

        HINTS:
        - Initialize max_val to negative infinity
        - Handle stride correctly when accessing input
        - No parameters to update (pooling has no weights)
        """
        ### BEGIN SOLUTION
        # Input validation and shape extraction
        if len(x.shape) != 4:
            raise ValueError(f"Expected 4D input (batch, channels, height, width), got {x.shape}")

        batch_size, channels, in_height, in_width = x.shape
        kernel_h, kernel_w = self.kernel_size

        # Calculate output dimensions
        out_height = (in_height + 2 * self.padding - kernel_h) // self.stride + 1
        out_width = (in_width + 2 * self.padding - kernel_w) // self.stride + 1

        # Apply padding if needed
        if self.padding > 0:
            padded_input = np.pad(x.data,
                                ((0, 0), (0, 0), (self.padding, self.padding), (self.padding, self.padding)),
                                mode='constant', constant_values=-np.inf)
        else:
            padded_input = x.data

        # Initialize output
        output = np.zeros((batch_size, channels, out_height, out_width))

        # Explicit nested loop max pooling
        for b in range(batch_size):
            for c in range(channels):
                for out_h in range(out_height):
                    for out_w in range(out_width):
                        # Calculate input region for this output position
                        in_h_start = out_h * self.stride
                        in_w_start = out_w * self.stride

                        # Find maximum in window
                        max_val = -np.inf
                        for k_h in range(kernel_h):
                            for k_w in range(kernel_w):
                                input_val = padded_input[b, c,
                                                       in_h_start + k_h,
                                                       in_w_start + k_w]
                                max_val = max(max_val, input_val)

                        # Store result
                        output[b, c, out_h, out_w] = max_val

        return Tensor(output)
        ### END SOLUTION

    def parameters(self):
        """Return empty list (pooling has no parameters)."""
        return []

    def __call__(self, x):
        """Enable model(x) syntax."""
        return self.forward(x)

# %% [markdown]
"""
### AvgPool2d Implementation - Smoothing and Generalizing Features

AvgPool2d computes the average of each spatial window, creating smoother features that are less sensitive to noise and exact pixel positions.

#### MaxPool vs AvgPool: Different Philosophies

```
Same Input Window (2Γ—2):    MaxPool Output:    AvgPool Output:
β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”
β”‚ 0.1 β”‚ 0.9 β”‚               0.9              0.425
β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€              (max)             (mean)
β”‚ 0.3 β”‚ 0.3 β”‚
β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜

Interpretation:
MaxPool: "What's the strongest feature here?"
AvgPool: "What's the general feature level here?"
```

#### When to Use Average Pooling

```
Use Cases:
βœ“ Global Average Pooling (GAP) for classification
βœ“ When you want smoother, less noisy features
βœ“ When exact feature location doesn't matter
βœ“ In shallower networks where sharp features aren't critical

Typical Pattern:
Feature Maps β†’ Global Average Pool β†’ Dense β†’ Classification
(256Γ—7Γ—7)   β†’        (256Γ—1Γ—1)      β†’ FC   β†’    (10)
              Replaces flatten+dense with parameter reduction
```

#### Mathematical Implementation

```
Average Pooling Computation:
Window: [a, b]    Result = (a + b + c + d) / 4
        [c, d]

For efficiency, we:
1. Sum all values in window: window_sum = a + b + c + d
2. Divide by window area: result = window_sum / (kernel_h Γ— kernel_w)
3. Store result at output position

Memory access pattern identical to MaxPool, just different aggregation!
```

#### Practical Considerations

- **Memory**: Same 4Γ— reduction as MaxPool
- **Computation**: Slightly more expensive (sum + divide vs max)
- **Features**: Smoother, more generalized than MaxPool
- **Use**: Often in final layers (Global Average Pooling) to reduce parameters
"""

# %% nbgrader={"grade": false, "grade_id": "avgpool2d-class", "solution": true}

#| export

class AvgPool2d:
    """
    2D Average Pooling layer for spatial dimension reduction.

    Applies average operation over spatial windows, smoothing
    features while reducing computational load.

    Args:
        kernel_size: Size of pooling window (int or tuple)
        stride: Stride of pooling operation (default: same as kernel_size)
        padding: Zero-padding added to input (default: 0)
    """

    def __init__(self, kernel_size, stride=None, padding=0):
        """
        Initialize AvgPool2d layer.

        TODO: Store pooling parameters (same as MaxPool2d)

        APPROACH:
        1. Convert kernel_size to tuple if needed
        2. Set stride to kernel_size if not provided
        3. Store padding parameter
        """
        super().__init__()

        ### BEGIN SOLUTION
        # Handle kernel_size as int or tuple
        if isinstance(kernel_size, int):
            self.kernel_size = (kernel_size, kernel_size)
        else:
            self.kernel_size = kernel_size

        # Default stride equals kernel_size (non-overlapping)
        if stride is None:
            self.stride = self.kernel_size[0]
        else:
            self.stride = stride

        self.padding = padding
        ### END SOLUTION

    def forward(self, x):
        """
        Forward pass through AvgPool2d layer.

        TODO: Implement average pooling with explicit loops

        APPROACH:
        1. Similar structure to MaxPool2d
        2. Instead of max, compute average of window
        3. Divide sum by window area for true average

        LOOP STRUCTURE:
        for batch in range(batch_size):
            for channel in range(channels):
                for out_h in range(out_height):
                    for out_w in range(out_width):
                        # Compute average in window
                        window_sum = 0
                        for k_h in range(kernel_height):
                            for k_w in range(kernel_width):
                                window_sum += input[...]
                        avg_val = window_sum / (kernel_height * kernel_width)

        HINT: Remember to divide by window area to get true average
        """
        ### BEGIN SOLUTION
        # Input validation and shape extraction
        if len(x.shape) != 4:
            raise ValueError(f"Expected 4D input (batch, channels, height, width), got {x.shape}")

        batch_size, channels, in_height, in_width = x.shape
        kernel_h, kernel_w = self.kernel_size

        # Calculate output dimensions
        out_height = (in_height + 2 * self.padding - kernel_h) // self.stride + 1
        out_width = (in_width + 2 * self.padding - kernel_w) // self.stride + 1

        # Apply padding if needed
        if self.padding > 0:
            padded_input = np.pad(x.data,
                                ((0, 0), (0, 0), (self.padding, self.padding), (self.padding, self.padding)),
                                mode='constant', constant_values=0)
        else:
            padded_input = x.data

        # Initialize output
        output = np.zeros((batch_size, channels, out_height, out_width))

        # Explicit nested loop average pooling
        for b in range(batch_size):
            for c in range(channels):
                for out_h in range(out_height):
                    for out_w in range(out_width):
                        # Calculate input region for this output position
                        in_h_start = out_h * self.stride
                        in_w_start = out_w * self.stride

                        # Compute sum in window
                        window_sum = 0.0
                        for k_h in range(kernel_h):
                            for k_w in range(kernel_w):
                                input_val = padded_input[b, c,
                                                       in_h_start + k_h,
                                                       in_w_start + k_w]
                                window_sum += input_val

                        # Compute average
                        avg_val = window_sum / (kernel_h * kernel_w)

                        # Store result
                        output[b, c, out_h, out_w] = avg_val

        # Return Tensor with gradient tracking (consistent with MaxPool2d)
        result = Tensor(output, requires_grad=x.requires_grad)
        return result
        ### END SOLUTION

    def parameters(self):
        """Return empty list (pooling has no parameters)."""
        return []

    def __call__(self, x):
        """Enable model(x) syntax."""
        return self.forward(x)

# %% [markdown]
"""
## πŸ—οΈ Batch Normalization - Stabilizing Deep Network Training

Batch Normalization (BatchNorm) is one of the most important techniques for training deep networks. It normalizes activations across the batch dimension, dramatically improving training stability and speed.

### Why BatchNorm Matters

```
Without BatchNorm:                  With BatchNorm:
Layer outputs can have              Layer outputs are normalized
wildly varying scales:              to consistent scale:

Layer 1: mean=0.5, std=0.3         Layer 1: meanβ‰ˆ0, stdβ‰ˆ1
Layer 5: mean=12.7, std=8.4   β†’    Layer 5: meanβ‰ˆ0, stdβ‰ˆ1
Layer 10: mean=0.001, std=0.0003   Layer 10: meanβ‰ˆ0, stdβ‰ˆ1

Result: Unstable gradients         Result: Stable training
        Slow convergence                   Fast convergence
        Careful learning rate              Robust to hyperparameters
```

### The BatchNorm Computation

For each channel c, BatchNorm computes:
```
1. Batch Statistics (during training):
   ΞΌ_c = mean(x[:, c, :, :])     # Mean over batch and spatial dims
   σ²_c = var(x[:, c, :, :])     # Variance over batch and spatial dims

2. Normalize:
   xΜ‚_c = (x[:, c, :, :] - ΞΌ_c) / sqrt(σ²_c + Ξ΅)

3. Scale and Shift (learnable parameters):
   y_c = Ξ³_c * xΜ‚_c + Ξ²_c       # Ξ³ (gamma) and Ξ² (beta) are learned
```

### Train vs Eval Mode

This is a critical systems concept:

```
Training Mode:                      Eval Mode:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Use batch stats    β”‚             β”‚ Use running stats  β”‚
β”‚ Update running     β”‚             β”‚ (accumulated from  β”‚
β”‚ mean/variance      β”‚             β”‚  training)         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
   ↓                                  ↓
Computes ΞΌ, σ² from                Uses frozen ΞΌ, σ² for
current batch                      consistent inference
```

**Why this matters**: During inference, you might process just 1 image. Batch statistics from 1 sample would be meaningless. Running statistics provide stable normalization.
"""

# %% nbgrader={"grade": false, "grade_id": "batchnorm2d-class", "solution": true}

#| export

class BatchNorm2d:
    """
    Batch Normalization for 2D spatial inputs (images).

    Normalizes activations across batch and spatial dimensions for each channel,
    then applies learnable scale (gamma) and shift (beta) parameters.

    Key behaviors:
    - Training: Uses batch statistics, updates running statistics
    - Eval: Uses frozen running statistics for consistent inference

    Args:
        num_features: Number of channels (C in NCHW format)
        eps: Small constant for numerical stability (default: 1e-5)
        momentum: Momentum for running statistics update (default: 0.1)
    """

    def __init__(self, num_features, eps=1e-5, momentum=0.1):
        """
        Initialize BatchNorm2d layer.

        TODO: Initialize learnable and running parameters

        APPROACH:
        1. Store hyperparameters (num_features, eps, momentum)
        2. Initialize gamma (scale) to ones - identity at start
        3. Initialize beta (shift) to zeros - no shift at start
        4. Initialize running_mean to zeros
        5. Initialize running_var to ones
        6. Set training mode to True initially

        EXAMPLE:
        >>> bn = BatchNorm2d(64)  # For 64-channel feature maps
        >>> print(bn.gamma.shape)  # (64,)
        >>> print(bn.training)     # True
        """
        super().__init__()

        ### BEGIN SOLUTION
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum

        # Learnable parameters (requires_grad=True for training)
        # gamma (scale): initialized to 1 so output = normalized input initially
        self.gamma = Tensor(np.ones(num_features), requires_grad=True)
        # beta (shift): initialized to 0 so no shift initially
        self.beta = Tensor(np.zeros(num_features), requires_grad=True)

        # Running statistics (not trained, accumulated during training)
        # These are used during evaluation for consistent normalization
        self.running_mean = np.zeros(num_features)
        self.running_var = np.ones(num_features)

        # Training mode flag
        self.training = True
        ### END SOLUTION

    def train(self):
        """Set layer to training mode."""
        self.training = True
        return self

    def eval(self):
        """Set layer to evaluation mode."""
        self.training = False
        return self

    def forward(self, x):
        """
        Forward pass through BatchNorm2d.

        TODO: Implement batch normalization forward pass

        APPROACH:
        1. Validate input shape (must be 4D: batch, channels, height, width)
        2. If training:
           a. Compute batch mean and variance per channel
           b. Normalize using batch statistics
           c. Update running statistics with momentum
        3. If eval:
           a. Use running mean and variance
           b. Normalize using frozen statistics
        4. Apply scale (gamma) and shift (beta)

        EXAMPLE:
        >>> bn = BatchNorm2d(16)
        >>> x = Tensor(np.random.randn(2, 16, 8, 8))  # batch=2, channels=16, 8x8
        >>> y = bn(x)
        >>> print(y.shape)  # (2, 16, 8, 8) - same shape

        HINTS:
        - Compute mean/var over axes (0, 2, 3) to get per-channel statistics
        - Reshape gamma/beta to (1, C, 1, 1) for broadcasting
        - Running stat update: running = (1 - momentum) * running + momentum * batch
        """
        ### BEGIN SOLUTION
        # Input validation
        if len(x.shape) != 4:
            raise ValueError(f"Expected 4D input (batch, channels, height, width), got {x.shape}")

        batch_size, channels, height, width = x.shape

        if channels != self.num_features:
            raise ValueError(f"Expected {self.num_features} channels, got {channels}")

        if self.training:
            # Compute batch statistics per channel
            # Mean over batch and spatial dimensions: axes (0, 2, 3)
            batch_mean = np.mean(x.data, axis=(0, 2, 3))  # Shape: (C,)
            batch_var = np.var(x.data, axis=(0, 2, 3))    # Shape: (C,)

            # Update running statistics (exponential moving average)
            self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * batch_mean
            self.running_var = (1 - self.momentum) * self.running_var + self.momentum * batch_var

            # Use batch statistics for normalization
            mean = batch_mean
            var = batch_var
        else:
            # Use running statistics (frozen during eval)
            mean = self.running_mean
            var = self.running_var

        # Normalize: (x - mean) / sqrt(var + eps)
        # Reshape mean and var for broadcasting: (C,) -> (1, C, 1, 1)
        mean_reshaped = mean.reshape(1, channels, 1, 1)
        var_reshaped = var.reshape(1, channels, 1, 1)

        x_normalized = (x.data - mean_reshaped) / np.sqrt(var_reshaped + self.eps)

        # Apply scale (gamma) and shift (beta)
        # Reshape for broadcasting: (C,) -> (1, C, 1, 1)
        gamma_reshaped = self.gamma.data.reshape(1, channels, 1, 1)
        beta_reshaped = self.beta.data.reshape(1, channels, 1, 1)

        output = gamma_reshaped * x_normalized + beta_reshaped

        # Return Tensor with gradient tracking
        result = Tensor(output, requires_grad=x.requires_grad or self.gamma.requires_grad)

        return result
        ### END SOLUTION

    def parameters(self):
        """Return learnable parameters (gamma and beta)."""
        return [self.gamma, self.beta]

    def __call__(self, x):
        """Enable model(x) syntax."""
        return self.forward(x)

# %% [markdown]
"""
### πŸ§ͺ Unit Test: BatchNorm2d
This test validates batch normalization implementation.
**What we're testing**: Normalization behavior, train/eval mode, running statistics
**Why it matters**: BatchNorm is essential for training deep CNNs effectively
**Expected**: Normalized outputs with proper mean/variance characteristics
"""

# %% nbgrader={"grade": true, "grade_id": "test-batchnorm2d", "locked": true, "points": 10}


def test_unit_batchnorm2d():
    """πŸ”¬ Test BatchNorm2d implementation."""
    print("πŸ”¬ Unit Test: BatchNorm2d...")

    # Test 1: Basic forward pass shape
    print("  Testing basic forward pass...")
    bn = BatchNorm2d(num_features=16)
    x = Tensor(np.random.randn(4, 16, 8, 8))  # batch=4, channels=16, 8x8
    y = bn(x)

    assert y.shape == x.shape, f"Output shape should match input, got {y.shape}"

    # Test 2: Training mode normalization
    print("  Testing training mode normalization...")
    bn2 = BatchNorm2d(num_features=8)
    bn2.train()  # Ensure training mode

    # Create input with known statistics per channel
    x2 = Tensor(np.random.randn(32, 8, 4, 4) * 10 + 5)  # Mean~5, std~10
    y2 = bn2(x2)

    # After normalization, each channel should have meanβ‰ˆ0, stdβ‰ˆ1
    # (before gamma/beta are applied, since gamma=1, beta=0)
    for c in range(8):
        channel_mean = np.mean(y2.data[:, c, :, :])
        channel_std = np.std(y2.data[:, c, :, :])
        assert abs(channel_mean) < 0.1, f"Channel {c} mean should be ~0, got {channel_mean:.3f}"
        assert abs(channel_std - 1.0) < 0.1, f"Channel {c} std should be ~1, got {channel_std:.3f}"

    # Test 3: Running statistics update
    print("  Testing running statistics update...")
    initial_running_mean = bn2.running_mean.copy()

    # Forward pass updates running stats
    x3 = Tensor(np.random.randn(16, 8, 4, 4) + 3)  # Offset mean
    _ = bn2(x3)

    # Running mean should have moved toward batch mean
    assert not np.allclose(bn2.running_mean, initial_running_mean), \
        "Running mean should update during training"

    # Test 4: Eval mode uses running statistics
    print("  Testing eval mode behavior...")
    bn3 = BatchNorm2d(num_features=4)

    # Train on some data to establish running stats
    for _ in range(10):
        x_train = Tensor(np.random.randn(8, 4, 4, 4) * 2 + 1)
        _ = bn3(x_train)

    saved_running_mean = bn3.running_mean.copy()
    saved_running_var = bn3.running_var.copy()

    # Switch to eval mode
    bn3.eval()

    # Process different data - running stats should NOT change
    x_eval = Tensor(np.random.randn(2, 4, 4, 4) * 5)  # Different distribution
    _ = bn3(x_eval)

    assert np.allclose(bn3.running_mean, saved_running_mean), \
        "Running mean should not change in eval mode"
    assert np.allclose(bn3.running_var, saved_running_var), \
        "Running var should not change in eval mode"

    # Test 5: Parameter counting
    print("  Testing parameter counting...")
    bn4 = BatchNorm2d(num_features=64)
    params = bn4.parameters()

    assert len(params) == 2, f"Should have 2 parameters (gamma, beta), got {len(params)}"
    assert params[0].shape == (64,), f"Gamma shape should be (64,), got {params[0].shape}"
    assert params[1].shape == (64,), f"Beta shape should be (64,), got {params[1].shape}"

    print("βœ… BatchNorm2d works correctly!")

if __name__ == "__main__":
    test_unit_batchnorm2d()

# %% [markdown]
"""
### πŸ§ͺ Unit Test: Pooling Operations
This test validates both max and average pooling implementations.
**What we're testing**: Dimension reduction, aggregation correctness
**Why it matters**: Pooling is essential for computational efficiency in CNNs
**Expected**: Correct output shapes and proper value aggregation
"""

# %% nbgrader={"grade": true, "grade_id": "test-pooling", "locked": true, "points": 10}


def test_unit_pooling():
    """πŸ”¬ Test MaxPool2d and AvgPool2d implementations."""
    print("πŸ”¬ Unit Test: Pooling Operations...")

    # Test 1: MaxPool2d basic functionality
    print("  Testing MaxPool2d...")
    maxpool = MaxPool2d(kernel_size=2, stride=2)
    x1 = Tensor(np.random.randn(1, 3, 8, 8))
    out1 = maxpool(x1)

    expected_shape = (1, 3, 4, 4)  # 8/2 = 4
    assert out1.shape == expected_shape, f"MaxPool expected {expected_shape}, got {out1.shape}"

    # Test 2: AvgPool2d basic functionality
    print("  Testing AvgPool2d...")
    avgpool = AvgPool2d(kernel_size=2, stride=2)
    x2 = Tensor(np.random.randn(2, 16, 16, 16))
    out2 = avgpool(x2)

    expected_shape = (2, 16, 8, 8)  # 16/2 = 8
    assert out2.shape == expected_shape, f"AvgPool expected {expected_shape}, got {out2.shape}"

    # Test 3: MaxPool vs AvgPool on known data
    print("  Testing max vs avg behavior...")
    # Create simple test case with known values
    test_data = np.array([[[[1, 2, 3, 4],
                           [5, 6, 7, 8],
                           [9, 10, 11, 12],
                           [13, 14, 15, 16]]]], dtype=np.float32)
    x3 = Tensor(test_data)

    maxpool_test = MaxPool2d(kernel_size=2, stride=2)
    avgpool_test = AvgPool2d(kernel_size=2, stride=2)

    max_out = maxpool_test(x3)
    avg_out = avgpool_test(x3)

    # For 2x2 windows:
    # Top-left: max([1,2,5,6]) = 6, avg = 3.5
    # Top-right: max([3,4,7,8]) = 8, avg = 5.5
    # Bottom-left: max([9,10,13,14]) = 14, avg = 11.5
    # Bottom-right: max([11,12,15,16]) = 16, avg = 13.5

    expected_max = np.array([[[[6, 8], [14, 16]]]])
    expected_avg = np.array([[[[3.5, 5.5], [11.5, 13.5]]]])

    assert np.allclose(max_out.data, expected_max), f"MaxPool values incorrect: {max_out.data} vs {expected_max}"
    assert np.allclose(avg_out.data, expected_avg), f"AvgPool values incorrect: {avg_out.data} vs {expected_avg}"

    # Test 4: Overlapping pooling (stride < kernel_size)
    print("  Testing overlapping pooling...")
    overlap_pool = MaxPool2d(kernel_size=3, stride=1)
    x4 = Tensor(np.random.randn(1, 1, 5, 5))
    out4 = overlap_pool(x4)

    # Output: (5-3)/1 + 1 = 3
    expected_shape = (1, 1, 3, 3)
    assert out4.shape == expected_shape, f"Overlapping pool expected {expected_shape}, got {out4.shape}"

    # Test 5: No parameters in pooling layers
    print("  Testing parameter counts...")
    assert len(maxpool.parameters()) == 0, "MaxPool should have no parameters"
    assert len(avgpool.parameters()) == 0, "AvgPool should have no parameters"

    print("βœ… Pooling operations work correctly!")

if __name__ == "__main__":
    test_unit_pooling()

# %% [markdown]
"""
## πŸ“Š Systems Analysis - Understanding Spatial Operation Performance

Now let's analyze the computational complexity and memory trade-offs of spatial operations. This analysis reveals why certain design choices matter for real-world performance.

### Key Questions We'll Answer:
1. How does convolution complexity scale with input size and kernel size?
2. What's the memory vs computation trade-off in different approaches?
3. How do modern optimizations (like im2col) change the performance characteristics?
"""

# %% nbgrader={"grade": false, "grade_id": "spatial-analysis", "solution": true}


def analyze_convolution_complexity():
    """πŸ“Š Analyze convolution computational complexity across different configurations."""
    print("πŸ“Š Analyzing Convolution Complexity...")

    # Test configurations optimized for educational demonstration (smaller sizes)
    configs = [
        {"input": (1, 3, 16, 16), "conv": (8, 3, 3), "name": "Small (16Γ—16)"},
        {"input": (1, 3, 24, 24), "conv": (12, 3, 3), "name": "Medium (24Γ—24)"},
        {"input": (1, 3, 32, 32), "conv": (16, 3, 3), "name": "Large (32Γ—32)"},
        {"input": (1, 3, 16, 16), "conv": (8, 3, 5), "name": "Large Kernel (5Γ—5)"},
    ]

    print(f"{'Configuration':<20} {'FLOPs':<15} {'Memory (MB)':<12} {'Time (ms)':<10}")
    print("-" * 70)

    for config in configs:
        # Create convolution layer
        in_ch = config["input"][1]
        out_ch, k_size = config["conv"][0], config["conv"][1]
        conv = Conv2d(in_ch, out_ch, kernel_size=k_size, padding=k_size//2)

        # Create input tensor
        x = Tensor(np.random.randn(*config["input"]))

        # Calculate theoretical FLOPs
        batch, in_channels, h, w = config["input"]
        out_channels, kernel_size = config["conv"][0], config["conv"][1]

        # Each output element requires in_channels * kernel_sizeΒ² multiply-adds
        flops_per_output = in_channels * kernel_size * kernel_size * 2  # 2 for MAC
        total_outputs = batch * out_channels * h * w  # Assuming same size with padding
        total_flops = flops_per_output * total_outputs

        # Measure memory usage
        input_memory = np.prod(config["input"]) * 4  # float32 = 4 bytes
        weight_memory = out_channels * in_channels * kernel_size * kernel_size * 4
        output_memory = batch * out_channels * h * w * 4
        total_memory = (input_memory + weight_memory + output_memory) / (1024 * 1024)  # MB

        # Measure execution time
        start_time = time.time()
        _ = conv(x)
        end_time = time.time()
        exec_time = (end_time - start_time) * 1000  # ms

        print(f"{config['name']:<20} {total_flops:<15,} {total_memory:<12.2f} {exec_time:<10.2f}")

    print("\nπŸ’‘ Key Insights:")
    print("πŸ”Έ FLOPs scale as O(HΓ—WΓ—C_inΓ—C_outΓ—KΒ²) - quadratic in spatial and kernel size")
    print("πŸ”Έ Memory scales linearly with spatial dimensions and channels")
    print("πŸ”Έ Large kernels dramatically increase computational cost")
    print("πŸš€ This motivates depthwise separable convolutions and attention mechanisms")

# Analysis will be called in main execution

# %% nbgrader={"grade": false, "grade_id": "pooling-analysis", "solution": true}


def analyze_pooling_effects():
    """πŸ“Š Analyze pooling's impact on spatial dimensions and features."""
    print("\nπŸ“Š Analyzing Pooling Effects...")

    # Create sample input with spatial structure
    # Simple edge pattern that pooling should preserve differently
    pattern = np.zeros((1, 1, 8, 8))
    pattern[0, 0, :, 3:5] = 1.0  # Vertical edge
    pattern[0, 0, 3:5, :] = 1.0  # Horizontal edge
    x = Tensor(pattern)

    print("Original 8Γ—8 pattern:")
    print(x.data[0, 0])

    # Test different pooling strategies
    pools = [
        (MaxPool2d(2, stride=2), "MaxPool 2Γ—2"),
        (AvgPool2d(2, stride=2), "AvgPool 2Γ—2"),
        (MaxPool2d(4, stride=4), "MaxPool 4Γ—4"),
        (AvgPool2d(4, stride=4), "AvgPool 4Γ—4"),
    ]

    print(f"\n{'Operation':<15} {'Output Shape':<15} {'Feature Preservation'}")
    print("-" * 60)

    for pool_op, name in pools:
        result = pool_op(x)
        # Measure how much of the original pattern is preserved
        preservation = np.sum(result.data > 0.1) / np.prod(result.shape)
        print(f"{name:<15} {str(result.shape):<15} {preservation:<.2%}")

        print(f"  Output:")
        print(f"  {result.data[0, 0]}")
        print()

    print("πŸ’‘ Key Insights:")
    print("πŸ”Έ MaxPool preserves sharp features better (edge detection)")
    print("πŸ”Έ AvgPool smooths features (noise reduction)")
    print("πŸ”Έ Larger pooling windows lose more spatial detail")
    print("πŸš€ Choice depends on task: classification vs detection vs segmentation")

# Analysis will be called in main execution

# %% [markdown]
"""
## πŸ”§ Integration - Building a Complete CNN

Now let's combine convolution and pooling into a complete CNN architecture. You'll see how spatial operations work together to transform raw pixels into meaningful features.

### CNN Architecture: From Pixels to Predictions

A CNN processes images through alternating convolution and pooling layers, gradually extracting higher-level features:

```
Complete CNN Pipeline:

Input Image (32Γ—32Γ—3)     Raw RGB pixels
       ↓
Conv2d(3β†’16, 3Γ—3)        Detect edges, textures
       ↓
ReLU Activation          Remove negative values
       ↓
MaxPool(2Γ—2)             Reduce to (16Γ—16Γ—16)
       ↓
Conv2d(16β†’32, 3Γ—3)       Detect shapes, patterns
       ↓
ReLU Activation          Remove negative values
       ↓
MaxPool(2Γ—2)             Reduce to (8Γ—8Γ—32)
       ↓
Flatten                  Reshape to vector (2048,)
       ↓
Linear(2048β†’10)          Final classification
       ↓
Softmax                  Probability distribution
```

### The Parameter Efficiency Story

```
CNN vs Dense Network Comparison:

CNN Approach:                     Dense Approach:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”               β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Conv1: 3β†’16     β”‚               β”‚ Input: 32Γ—32Γ—3  β”‚
β”‚ Params: 448     β”‚               β”‚ = 3,072 values  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€               β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Conv2: 16β†’32    β”‚               β”‚ Hidden: 1,000   β”‚
β”‚ Params: 4,640   β”‚               β”‚ Params: 3M+     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€               β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Linear: 2048β†’10 β”‚               β”‚ Output: 10      β”‚
β”‚ Params: 20,490  β”‚               β”‚ Params: 10K     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜               β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Total: ~25K params                Total: ~3M params

CNN wins with 120Γ— fewer parameters!
```

### Spatial Hierarchy: Why This Architecture Works

```
Layer-by-Layer Feature Evolution:

Layer 1 (Conv 3β†’16):              Layer 2 (Conv 16β†’32):
β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”           β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”
β”‚Edge β”‚ β”‚Edge β”‚ β”‚Edge β”‚           β”‚Shapeβ”‚ β”‚Cornerβ”‚ β”‚Textureβ”‚
β”‚ \\ /β”‚ β”‚  |  β”‚ β”‚ / \\β”‚           β”‚ β—‡  β”‚ β”‚  L  β”‚ β”‚ β‰ˆβ‰ˆβ‰ˆ β”‚
β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜           β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜
Simple features                   Complex combinations

Why pooling between layers:
βœ“ Reduces computation for next layer
βœ“ Increases receptive field (each conv sees larger input area)
βœ“ Provides translation invariance (cat moved 1 pixel still detected)
```

This hierarchical approach mirrors human vision: we first detect edges, then shapes, then objects!
"""

# %% [markdown]
"""
### SimpleCNN Implementation - Putting It All Together

Now we'll build a complete CNN that demonstrates how convolution and pooling work together. This is your first step from processing individual tensors to understanding complete images!

#### The CNN Architecture Pattern

```
SimpleCNN Architecture Visualization:

Input: (batch, 3, 32, 32)     ← RGB images (CIFAR-10 size)
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Conv2d(3β†’16, 3Γ—3, p=1)  β”‚    ← Detect edges, textures
β”‚ ReLU()                  β”‚    ← Remove negative values
β”‚ MaxPool(2Γ—2)            β”‚    ← Reduce to (batch, 16, 16, 16)
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Conv2d(16β†’32, 3Γ—3, p=1) β”‚   ← Detect shapes, patterns
β”‚ ReLU()                  β”‚   ← Remove negative values
β”‚ MaxPool(2Γ—2)            β”‚   ← Reduce to (batch, 32, 8, 8)
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Flatten()               β”‚   ← Reshape to (batch, 2048)
β”‚ Linear(2048β†’10)         β”‚   ← Final classification
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         ↓
Output: (batch, 10)           ← Class probabilities
```

#### Why This Architecture Works

```
Feature Hierarchy Development:

Layer 1 Features (3β†’16):     Layer 2 Features (16β†’32):
β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”
β”‚Edge β”‚Edge β”‚Edge β”‚Blob β”‚   β”‚Shapeβ”‚Cornerβ”‚Tex-β”‚Pat- β”‚
β”‚ \\  β”‚  |  β”‚ /   β”‚  β—‹  β”‚   β”‚ β—‡   β”‚  L  β”‚tureβ”‚tern  β”‚
β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜
Simple features             Complex combinations

Spatial Dimension Reduction:
32Γ—32 β†’ 16Γ—16 β†’ 8Γ—8
 1024    256     64  (per channel)

Channel Expansion:
3 β†’ 16 β†’ 32
More feature types at each level
```

#### Parameter Efficiency Demonstration

```
CNN vs Dense Comparison for 32Γ—32Γ—3 β†’ 10 classes:

CNN Approach:                    Dense Approach:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Conv1: 3β†’16, 3Γ—3   β”‚          β”‚ Input: 3072 values β”‚
β”‚ Params: 448        β”‚          β”‚        ↓           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€          β”‚ Dense: 3072β†’512    β”‚
β”‚ Conv2: 16β†’32, 3Γ—3  β”‚          β”‚ Params: 1.57M      β”‚
β”‚ Params: 4,640      β”‚          β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€          β”‚ Dense: 512β†’10      β”‚
β”‚ Dense: 2048β†’10     β”‚          β”‚ Params: 5,120      β”‚
β”‚ Params: 20,490     β”‚          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          Total: 1.58M params
Total: 25,578 params

CNN has 62Γ— fewer parameters while preserving spatial structure!
```

#### Receptive Field Growth

```
How each layer sees progressively larger input regions:

Layer 1 Conv (3Γ—3):           Layer 2 Conv (3Γ—3):
Each output pixel sees        Each output pixel sees
3Γ—3 = 9 input pixels         7Γ—7 = 49 input pixels
                             (due to pooling+conv)

Final Result: Layer 2 can detect complex patterns
spanning 7Γ—7 regions of original image!
```
"""

# %% nbgrader={"grade": false, "grade_id": "simple-cnn", "solution": true}

#| export

class SimpleCNN:
    """
    Simple CNN demonstrating spatial operations integration.

    Architecture:
    - Conv2d(3β†’16, 3Γ—3) + ReLU + MaxPool(2Γ—2)
    - Conv2d(16β†’32, 3Γ—3) + ReLU + MaxPool(2Γ—2)
    - Flatten + Linear(features→num_classes)
    """

    def __init__(self, num_classes=10):
        """
        Initialize SimpleCNN.

        TODO: Build CNN architecture with spatial and dense layers

        APPROACH:
        1. Conv layer 1: 3 β†’ 16 channels, 3Γ—3 kernel, padding=1
        2. Pool layer 1: 2Γ—2 max pooling
        3. Conv layer 2: 16 β†’ 32 channels, 3Γ—3 kernel, padding=1
        4. Pool layer 2: 2Γ—2 max pooling
        5. Calculate flattened size and add final linear layer

        HINT: For 32Γ—32 input β†’ 32β†’16β†’8β†’4 spatial reduction
        Final feature size: 32 channels Γ— 4Γ—4 = 512 features
        """
        super().__init__()

        ### BEGIN SOLUTION
        # Convolutional layers
        self.conv1 = Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
        self.pool1 = MaxPool2d(kernel_size=2, stride=2)

        self.conv2 = Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
        self.pool2 = MaxPool2d(kernel_size=2, stride=2)

        # Calculate flattened size
        # Input: 32Γ—32 β†’ Conv1+Pool1: 16Γ—16 β†’ Conv2+Pool2: 8Γ—8
        # Wait, let's recalculate: 32Γ—32 β†’ Pool1: 16Γ—16 β†’ Pool2: 8Γ—8
        # Final: 32 channels Γ— 8Γ—8 = 2048 features
        self.flattened_size = 32 * 8 * 8

        # Import Linear layer (we'll implement a simple version)
        # For now, we'll use a placeholder that we can replace
        # This represents the final classification layer
        self.num_classes = num_classes
        self.flattened_size = 32 * 8 * 8  # Will be used when we add Linear layer
        ### END SOLUTION

    def forward(self, x):
        """
        Forward pass through SimpleCNN.

        TODO: Implement CNN forward pass

        APPROACH:
        1. Apply conv1 β†’ ReLU β†’ pool1
        2. Apply conv2 β†’ ReLU β†’ pool2
        3. Flatten spatial dimensions
        4. Apply final linear layer (when available)

        For now, return features before final linear layer
        since we haven't imported Linear from layers module yet.
        """
        ### BEGIN SOLUTION
        # First conv block
        x = self.conv1(x)
        x = self.relu(x)  # ReLU activation
        x = self.pool1(x)

        # Second conv block
        x = self.conv2(x)
        x = self.relu(x)  # ReLU activation
        x = self.pool2(x)

        # Flatten for classification (reshape to 2D)
        batch_size = x.shape[0]
        x_flat = x.data.reshape(batch_size, -1)

        # Return flattened features
        # In a complete implementation, this would go through a Linear layer
        return Tensor(x_flat)
        ### END SOLUTION

    def relu(self, x):
        """Simple ReLU implementation for CNN."""
        return Tensor(np.maximum(0, x.data))

    def parameters(self):
        """Return all trainable parameters."""
        params = []
        params.extend(self.conv1.parameters())
        params.extend(self.conv2.parameters())
        # Linear layer parameters would be added here
        return params

    def __call__(self, x):
        """Enable model(x) syntax."""
        return self.forward(x)

# %% [markdown]
"""
### πŸ§ͺ Unit Test: SimpleCNN Integration
This test validates that spatial operations work together in a complete CNN architecture.
**What we're testing**: End-to-end spatial processing pipeline
**Why it matters**: Spatial operations must compose correctly for real CNNs
**Expected**: Proper dimension reduction and feature extraction
"""

# %% nbgrader={"grade": true, "grade_id": "test-simple-cnn", "locked": true, "points": 10}


def test_unit_simple_cnn():
    """πŸ”¬ Test SimpleCNN integration with spatial operations."""
    print("πŸ”¬ Unit Test: SimpleCNN Integration...")

    # Test 1: Forward pass with CIFAR-10 sized input
    print("  Testing forward pass...")
    model = SimpleCNN(num_classes=10)
    x = Tensor(np.random.randn(2, 3, 32, 32))  # Batch of 2, RGB, 32Γ—32

    features = model(x)

    # Expected: 2 samples, 32 channels Γ— 8Γ—8 spatial = 2048 features
    expected_shape = (2, 2048)
    assert features.shape == expected_shape, f"Expected {expected_shape}, got {features.shape}"

    # Test 2: Parameter counting
    print("  Testing parameter counting...")
    params = model.parameters()

    # Conv1: (16, 3, 3, 3) + bias (16,) = 432 + 16 = 448
    # Conv2: (32, 16, 3, 3) + bias (32,) = 4608 + 32 = 4640
    # Total: 448 + 4640 = 5088 parameters

    conv1_params = 16 * 3 * 3 * 3 + 16  # weights + bias
    conv2_params = 32 * 16 * 3 * 3 + 32  # weights + bias
    expected_total = conv1_params + conv2_params

    actual_total = sum(np.prod(p.shape) for p in params)
    assert actual_total == expected_total, f"Expected {expected_total} parameters, got {actual_total}"

    # Test 3: Different input sizes
    print("  Testing different input sizes...")

    # Test with different spatial dimensions
    x_small = Tensor(np.random.randn(1, 3, 16, 16))
    features_small = model(x_small)

    # 16Γ—16 β†’ 8Γ—8 β†’ 4Γ—4, so 32 Γ— 4Γ—4 = 512 features
    expected_small = (1, 512)
    assert features_small.shape == expected_small, f"Expected {expected_small}, got {features_small.shape}"

    # Test 4: Batch processing
    print("  Testing batch processing...")
    x_batch = Tensor(np.random.randn(8, 3, 32, 32))
    features_batch = model(x_batch)

    expected_batch = (8, 2048)
    assert features_batch.shape == expected_batch, f"Expected {expected_batch}, got {features_batch.shape}"

    print("βœ… SimpleCNN integration works correctly!")

if __name__ == "__main__":
    test_unit_simple_cnn()

# %% [markdown]
"""
## πŸ§ͺ Module Integration Test

Final validation that everything works together correctly.
"""

# %% nbgrader={"grade": true, "grade_id": "module-integration", "locked": true, "points": 15}


def test_module():
    """πŸ§ͺ Module Test: Complete Integration

    Comprehensive test of entire spatial module functionality.

    This final test runs before module summary to ensure:
    - All unit tests pass
    - Functions work together correctly
    - Module is ready for integration with TinyTorch
    """
    print("πŸ§ͺ RUNNING MODULE INTEGRATION TEST")
    print("=" * 50)

    # Run all unit tests
    print("Running unit tests...")
    test_unit_conv2d()
    test_unit_batchnorm2d()
    test_unit_pooling()
    test_unit_simple_cnn()

    print("\nRunning integration scenarios...")

    # Test realistic CNN workflow with BatchNorm
    print("πŸ”¬ Integration Test: Complete CNN pipeline with BatchNorm...")

    # Create a mini CNN for CIFAR-10 with BatchNorm (modern architecture)
    conv1 = Conv2d(3, 8, kernel_size=3, padding=1)
    bn1 = BatchNorm2d(8)
    pool1 = MaxPool2d(2, stride=2)
    conv2 = Conv2d(8, 16, kernel_size=3, padding=1)
    bn2 = BatchNorm2d(16)
    pool2 = AvgPool2d(2, stride=2)

    # Process batch of images (training mode)
    batch_images = Tensor(np.random.randn(4, 3, 32, 32))

    # Forward pass: Conv β†’ BatchNorm β†’ ReLU β†’ Pool (modern pattern)
    x = conv1(batch_images)  # (4, 8, 32, 32)
    x = bn1(x)               # (4, 8, 32, 32) - normalized
    x = Tensor(np.maximum(0, x.data))  # ReLU
    x = pool1(x)             # (4, 8, 16, 16)

    x = conv2(x)             # (4, 16, 16, 16)
    x = bn2(x)               # (4, 16, 16, 16) - normalized
    x = Tensor(np.maximum(0, x.data))  # ReLU
    features = pool2(x)      # (4, 16, 8, 8)

    # Validate shapes at each step
    assert features.shape[0] == 4, f"Batch size should be preserved, got {features.shape[0]}"
    assert features.shape == (4, 16, 8, 8), f"Final features shape incorrect: {features.shape}"

    # Test parameter collection across all layers
    all_params = []
    all_params.extend(conv1.parameters())
    all_params.extend(bn1.parameters())
    all_params.extend(conv2.parameters())
    all_params.extend(bn2.parameters())

    # Pooling has no parameters
    assert len(pool1.parameters()) == 0
    assert len(pool2.parameters()) == 0

    # BatchNorm has 2 params each (gamma, beta)
    assert len(bn1.parameters()) == 2, f"BatchNorm should have 2 parameters, got {len(bn1.parameters())}"

    # Total: Conv1 (2) + BN1 (2) + Conv2 (2) + BN2 (2) = 8 parameters
    assert len(all_params) == 8, f"Expected 8 parameter tensors total, got {len(all_params)}"

    # Test train/eval mode switching
    print("πŸ”¬ Integration Test: Train/Eval mode switching...")
    bn1.eval()
    bn2.eval()

    # Run inference with single sample (would fail with batch stats)
    single_image = Tensor(np.random.randn(1, 3, 32, 32))
    x = conv1(single_image)
    x = bn1(x)  # Uses running stats, not batch stats
    assert x.shape == (1, 8, 32, 32), f"Single sample inference should work in eval mode"

    print("βœ… CNN pipeline with BatchNorm works correctly!")

    # Test memory efficiency comparison
    print("πŸ”¬ Integration Test: Memory efficiency analysis...")

    # Compare different pooling strategies (reduced size for faster execution)
    input_data = Tensor(np.random.randn(1, 16, 32, 32))

    # No pooling: maintain spatial size
    conv_only = Conv2d(16, 32, kernel_size=3, padding=1)
    no_pool_out = conv_only(input_data)
    no_pool_size = np.prod(no_pool_out.shape) * 4  # float32 bytes

    # With pooling: reduce spatial size
    conv_with_pool = Conv2d(16, 32, kernel_size=3, padding=1)
    pool = MaxPool2d(2, stride=2)
    pool_out = pool(conv_with_pool(input_data))
    pool_size = np.prod(pool_out.shape) * 4  # float32 bytes

    memory_reduction = no_pool_size / pool_size
    assert memory_reduction == 4.0, f"2Γ—2 pooling should give 4Γ— memory reduction, got {memory_reduction:.1f}Γ—"

    print(f"  Memory reduction with pooling: {memory_reduction:.1f}Γ—")
    print("βœ… Memory efficiency analysis complete!")

    print("\n" + "=" * 50)
    print("πŸŽ‰ ALL TESTS PASSED! Module ready for export.")
    print("Run: tito module complete 09")

# Run module test when this cell is executed
if __name__ == "__main__":
    test_module()

# %% [markdown]
"""
## πŸ”§ Main Execution Block

Running all module components including systems analysis and final validation.
"""

# %% nbgrader={"grade": false, "grade_id": "main-execution", "solution": true}

if __name__ == "__main__":
    print("=" * 70)
    print("MODULE 09: SPATIAL OPERATIONS - TEST EXECUTION")
    print("=" * 70)

    test_module()

    print("\n" + "="*70)
    print("MODULE 09 TESTS COMPLETE!")
    print("="*70)


# %% [markdown]
"""
## πŸ€” ML Systems Reflection Questions

Before completing this module, reflect on what you've learned about spatial operations and their systems implications:

### Question 1: Conv2d Memory Footprint
A Conv2d layer with 64 filters (3Γ—3) processes a (224Γ—224Γ—3) image.
- Calculate the memory footprint during the forward pass
- Consider: input activations, output activations, filter weights, and biases
- What happens when batch size increases from 1 to 32?

**Think about**: Why do modern vision models use techniques like gradient checkpointing?

### Question 2: Spatial Locality and CPU Performance
Why are CNNs faster on CPUs than fully-connected networks of similar parameter count?

**Consider**:
- Cache locality in convolution operations
- Data reuse patterns in sliding windows
- Memory access patterns (sequential vs random)

**Hint**: Think about what happens when the same filter is applied across the image.

### Question 3: Im2col Trade-off
The im2col algorithm transforms convolution into matrix multiplication, using more memory but speeding up computation.

**When is this trade-off worthwhile?**
- Small vs large batch sizes
- Small vs large images
- Training vs inference
- Mobile vs server deployment

**Think about**: Why don't mobile devices always use im2col?

### Question 4: Pooling's Systems Benefits
MaxPool2d reduces spatial dimensions (e.g., 224Γ—224 β†’ 112Γ—112).

**What's the systems benefit beyond reducing parameters?**
- Memory bandwidth requirements
- Computation in subsequent layers
- Gradient memory during backpropagation
- Cache efficiency in deeper layers

**Calculate**: If 5 layers each use 2Γ—2 pooling, what's the total memory reduction?

### Question 5: Mobile ML Deployment
Why do mobile ML models prefer depthwise-separable convolutions over standard Conv2d?

**Analyze the FLOPs**:
- Standard 3Γ—3 conv: C_in Γ— C_out Γ— H Γ— W Γ— 9
- Depthwise + Pointwise: (C_in Γ— H Γ— W Γ— 9) + (C_in Γ— C_out Γ— H Γ— W)

**When does the trade-off favor depthwise separable?**
- As number of channels increases
- As spatial dimensions change
- Energy consumption vs accuracy

**Real-world context**: This is why MobileNet and EfficientNet architectures exist.

---

**These questions help you think like an ML systems engineer, not just an algorithm implementer.**
"""

# %% [markdown]
"""
## ⭐ Aha Moment: Convolution Extracts Features

**What you built:** Convolutional layers that process spatial data like images.

**Why it matters:** Conv2d looks at local neighborhoods, detecting edges, textures, and patterns.
Unlike Linear layers that see pixels independently, Conv2d understands that nearby pixels are
related. This is why CNNs revolutionized computer vision!

In the milestones, you'll use these spatial operations to build a CNN that recognizes digits.
"""

# %%
def demo_spatial():
    """🎯 See Conv2d process spatial data."""
    print("🎯 AHA MOMENT: Convolution Extracts Features")
    print("=" * 45)

    # Create a simple 8x8 "image" with 1 channel
    image = Tensor(np.random.randn(1, 1, 8, 8))

    # Conv2d: 1 input channel β†’ 4 feature maps
    conv = Conv2d(in_channels=1, out_channels=4, kernel_size=3)

    output = conv(image)

    print(f"Input:  {image.shape}  ← 1 image, 1 channel, 8Γ—8")
    print(f"Output: {output.shape}  ← 1 image, 4 features, 6Γ—6")
    print(f"\nConv kernel: 3Γ—3 sliding window")
    print(f"Output smaller: 8 - 3 + 1 = 6 (no padding)")

    print("\n✨ Conv2d detects spatial patterns in images!")

# %%
if __name__ == "__main__":
    test_module()
    print("\n")
    demo_spatial()

# %% [markdown]
"""
## 🎯 Module Summary

## πŸš€ MODULE SUMMARY: Spatial Operations

Congratulations! You've built the spatial processing foundation that powers computer vision!

### Key Accomplishments
- Built Conv2d with explicit loops showing O(NΒ²MΒ²KΒ²) complexity βœ…
- Implemented BatchNorm2d with train/eval mode and running statistics βœ…
- Implemented MaxPool2d and AvgPool2d for spatial dimension reduction βœ…
- Created SimpleCNN demonstrating spatial operation integration βœ…
- Analyzed computational complexity and memory trade-offs in spatial processing βœ…
- All tests pass including complete CNN pipeline validation βœ…

### Systems Insights Discovered
- **Convolution Complexity**: Quadratic scaling with spatial size, kernel size significantly impacts cost
- **Batch Normalization**: Train vs eval mode is critical - batch stats during training, running stats during inference
- **Memory Patterns**: Pooling provides 4Γ— memory reduction while preserving important features
- **Architecture Design**: Strategic spatial reduction enables parameter-efficient feature extraction
- **Cache Performance**: Spatial locality in convolution benefits from optimal memory access patterns

### Ready for Next Steps
Your spatial operations enable building complete CNNs for computer vision tasks!
Export with: `tito module complete 09`

**Next**: Milestone 03 will combine your spatial operations with training pipeline to build a CNN for CIFAR-10!

Your implementation shows why:
- Modern CNNs use small kernels (3Γ—3) instead of large ones (computational efficiency)
- Pooling layers are crucial for managing memory in deep networks (4Γ— reduction per layer)
- Explicit loops reveal the true computational cost hidden by optimized implementations
- Spatial operations unlock computer vision - from MLPs processing vectors to CNNs understanding images!
"""