Spaces:
Running
Running
File size: 70,716 Bytes
af4939b c683f70 528030b c683f70 af4939b c683f70 af4939b c683f70 af4939b c683f70 af4939b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.17.1
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown]
"""
# Module 01: Tensor Foundation - Building Blocks of ML
Welcome to Module 01! You're about to build the foundational Tensor class that powers all machine learning operations.
## π Prerequisites & Progress
**You've Built**: Nothing - this is our foundation!
**You'll Build**: A complete Tensor class with arithmetic, matrix operations, and shape manipulation
**You'll Enable**: Foundation for activations, layers, and all future neural network components
**Connection Map**:
```
NumPy Arrays β Tensor β Activations (Module 02)
(raw data) (ML ops) (intelligence)
```
## π― Learning Objectives
By the end of this module, you will:
1. Implement a complete Tensor class with fundamental operations
2. Understand tensors as the universal data structure in ML
3. Master broadcasting, matrix multiplication, and shape manipulation
4. Test tensor operations with immediate validation
Let's get started!
## π¦ Where This Code Lives in the Final Package
**Learning Side:** You work in modules/01_tensor/tensor_dev.py
**Building Side:** Code exports to tinytorch.core.tensor
```python
# Final package structure:
# Other modules will import and use this Tensor
```
**Why this matters:**
- **Learning:** Complete tensor system in one focused module for deep understanding
- **Production:** Proper organization like PyTorch's torch.Tensor with all core operations together
- **Consistency:** All tensor operations and data manipulation in core.tensor
- **Integration:** Foundation that every other module will build upon
"""
# %% nbgrader={"grade": false, "grade_id": "imports", "solution": true}
#| default_exp core.tensor
#| export
import numpy as np
# Constants for memory calculations
BYTES_PER_FLOAT32 = 4 # Standard float32 size in bytes
KB_TO_BYTES = 1024 # Kilobytes to bytes conversion
MB_TO_BYTES = 1024 * 1024 # Megabytes to bytes conversion
# %% [markdown]
"""
## π Module Dependencies
**Prerequisites**: NONE - This is the foundation module
**External Dependencies**:
- `numpy` (for array operations and numerical computing)
**TinyTorch Dependencies**: NONE
**Important**: This module has NO TinyTorch dependencies.
Other modules will import FROM this module.
**Dependency Flow**:
```
Module 01 (Tensor) β All Other Modules
β
Foundation for entire TinyTorch system
```
Students completing this module will have built the foundation
that every other TinyTorch component depends on.
"""
# %% [markdown]
"""
## π‘ Introduction: What is a Tensor?
A tensor is a multi-dimensional array that serves as the fundamental data structure in machine learning. Think of it as a universal container that can hold data in different dimensions:
```
Tensor Dimensions:
βββββββββββββββ
β 0D: Scalar β 5.0 (just a number)
β 1D: Vector β [1, 2, 3] (list of numbers)
β 2D: Matrix β [[1, 2] (grid of numbers)
β β [3, 4]]
β 3D: Cube β [[[... (stack of matrices)
βββββββββββββββ
```
In machine learning, tensors flow through operations like water through pipes:
```
Neural Network Data Flow:
Input Tensor β Layer 1 β Activation β Layer 2 β ... β Output Tensor
[batch, [batch, [batch, [batch, [batch,
features] hidden] hidden] hidden2] classes]
```
Every neural network, from simple linear regression to modern transformers, processes tensors. Understanding tensors means understanding the foundation of all ML computations.
### Why Tensors Matter in ML Systems
In production ML systems, tensors carry more than just data - they carry the computational graph, memory layout information, and execution context:
```
Real ML Pipeline:
Raw Data β Preprocessing β Tensor Creation β Model Forward Pass β Loss Computation
β β β β β
Files NumPy Arrays Tensors GPU Tensors Scalar Loss
```
**Key Insight**: Tensors bridge the gap between mathematical concepts and efficient computation on modern hardware.
"""
# %% [markdown]
"""
## π Foundations: Mathematical Background
### Core Operations We'll Implement
Our Tensor class will support all fundamental operations that neural networks need:
```
Operation Types:
βββββββββββββββββββ¬ββββββββββββββββββ¬ββββββββββββββββββ
β Element-wise β Matrix Ops β Shape Ops β
βββββββββββββββββββΌββββββββββββββββββΌββββββββββββββββββ€
β + Addition β @ Matrix Mult β .reshape() β
β - Subtraction β .transpose() β .sum() β
β * Multiplicationβ β .mean() β
β / Division β β .max() β
βββββββββββββββββββ΄ββββββββββββββββββ΄ββββββββββββββββββ
```
### Broadcasting: Making Tensors Work Together
Broadcasting automatically aligns tensors of different shapes for operations:
```
Broadcasting Examples:
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Scalar + Vector: β
β 5 + [1, 2, 3] β [5, 5, 5] + [1, 2, 3] = [6, 7, 8] β
β β
β Matrix + Vector (row-wise): β
β [[1, 2]] [10] [[1, 2]] [[10, 10]] [[11, 12]] β
β [[3, 4]] + [10] = [[3, 4]] + [[10, 10]] = [[13, 14]] β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
**Memory Layout**: NumPy uses row-major (C-style) storage where elements are stored row by row in memory for cache efficiency:
```
Memory Layout (2Γ3 matrix):
Matrix: Memory:
[[1, 2, 3] [1][2][3][4][5][6]
[4, 5, 6]] β Row 1 β Row 2
Cache Behavior:
Sequential Access: Fast (uses cache lines efficiently)
Row access: [1][2][3] β cache hit, hit, hit
Random Access: Slow (cache misses)
Column access: [1][4] β cache hit, miss
```
This memory layout affects performance in real ML workloads - algorithms that access data sequentially run faster than those that access randomly.
"""
# %% [markdown]
"""
## ποΈ Implementation: Building Tensor Foundation
Let's build our Tensor class step by step, testing each component as we go.
### Tensor Class Architecture
```
Tensor Class Structure:
βββββββββββββββββββββββββββββββββββ
β Core Attributes: β
β β’ data: np.array (the numbers) β
β β’ shape: tuple (dimensions) β
β β’ size: int (total elements) β
β β’ dtype: type (float32) β
βββββββββββββββββββββββββββββββββββ€
β Arithmetic Operations: β
β β’ __add__, __sub__, __mul__ β
β β’ __truediv__, matmul() β
βββββββββββββββββββββββββββββββββββ€
β Shape Operations: β
β β’ reshape(), transpose() β
β β’ sum(), mean(), max() β
β β’ __getitem__ (indexing) β
βββββββββββββββββββββββββββββββββββ€
β Utility Methods: β
β β’ __repr__(), __str__() β
β β’ numpy(), memory_footprint() β
βββββββββββββββββββββββββββββββββββ
```
This clean design focuses on what tensors fundamentally do: store and manipulate numerical data efficiently.
"""
# %% [markdown]
"""
### Tensor Creation and Initialization
Before we implement operations, let's understand how tensors store data and manage their attributes. This initialization is the foundation that everything else builds upon.
```
Tensor Initialization Process:
Input Data β Validation β NumPy Array β Tensor Wrapper β Ready for Operations
[1,2,3] β types β np.array β shape=(3,) β + - * / @ ...
β β β β
List/Array Type Check Memory Attributes Set
(optional) Allocation
Memory Allocation Example:
Input: [[1, 2, 3], [4, 5, 6]]
β
NumPy allocates: [1][2][3][4][5][6] in contiguous memory
β
Tensor wraps with: shape=(2,3), size=6, dtype=int64
```
**Key Design Principle**: Our Tensor is a wrapper around NumPy arrays that adds ML-specific functionality. We leverage NumPy's battle-tested memory management and computation kernels while adding the gradient tracking and operation chaining needed for deep learning.
**Why This Approach?**
- **Performance**: NumPy's C implementations are highly optimized
- **Compatibility**: Easy integration with scientific Python ecosystem
- **Memory Efficiency**: No unnecessary data copying
- **Future-Proof**: Easy transition to GPU tensors in advanced modules
"""
# %% nbgrader={"grade": false, "grade_id": "tensor-class", "solution": true}
#| export
class Tensor:
"""Educational tensor - the foundation of machine learning computation.
This class provides the core data structure for all ML operations:
- data: The actual numerical values (NumPy array)
- shape: Dimensions of the tensor
- size: Total number of elements
- dtype: Data type (float32)
All arithmetic, matrix, and shape operations are built on this foundation.
"""
def __init__(self, data):
"""Create a new tensor from data.
TODO: Initialize a Tensor by wrapping data in a NumPy array and setting attributes.
APPROACH:
1. Convert data to NumPy array with dtype=float32
2. Store the array as self.data
3. Set self.shape from the array's shape
4. Set self.size from the array's size
5. Set self.dtype from the array's dtype
EXAMPLE:
>>> t = Tensor([1, 2, 3])
>>> print(t.shape)
(3,)
>>> print(t.size)
3
HINT: Use np.array(data, dtype=np.float32) to convert data to NumPy array
"""
### BEGIN SOLUTION
self.data = np.array(data, dtype=np.float32)
self.shape = self.data.shape
self.size = self.data.size
self.dtype = self.data.dtype
### END SOLUTION
def __repr__(self):
"""String representation of tensor for debugging."""
return f"Tensor(data={self.data}, shape={self.shape})"
def __str__(self):
"""Human-readable string representation."""
return f"Tensor({self.data})"
def numpy(self):
"""Return the underlying NumPy array."""
return self.data
def memory_footprint(self):
"""Calculate exact memory usage in bytes.
Systems Concept: Understanding memory footprint is fundamental to ML systems.
Before running any operation, engineers should know how much memory it requires.
Returns:
int: Memory usage in bytes (e.g., 1000x1000 float32 = 4MB)
"""
return self.data.nbytes
def __add__(self, other):
"""Add two tensors element-wise with broadcasting support.
TODO: Implement element-wise addition that works with both Tensors and scalars.
APPROACH:
1. Check if other is a Tensor (use isinstance)
2. If Tensor: add self.data + other.data
3. If scalar: add self.data + other (broadcasting)
4. Wrap result in new Tensor
EXAMPLE:
>>> a = Tensor([1, 2, 3])
>>> b = Tensor([4, 5, 6])
>>> c = a + b
>>> print(c.data)
[5. 7. 9.]
HINT: NumPy's + operator handles broadcasting automatically
"""
### BEGIN SOLUTION
if isinstance(other, Tensor):
return Tensor(self.data + other.data)
else:
return Tensor(self.data + other)
### END SOLUTION
def __sub__(self, other):
"""Subtract two tensors element-wise.
TODO: Implement element-wise subtraction (same pattern as __add__).
APPROACH:
1. Check if other is a Tensor
2. If Tensor: subtract self.data - other.data
3. If scalar: subtract self.data - other
4. Return new Tensor with result
EXAMPLE:
>>> a = Tensor([5, 7, 9])
>>> b = Tensor([1, 2, 3])
>>> c = a - b
>>> print(c.data)
[4. 5. 6.]
HINT: Follow the same pattern as __add__ but with subtraction
"""
### BEGIN SOLUTION
if isinstance(other, Tensor):
return Tensor(self.data - other.data)
else:
return Tensor(self.data - other)
### END SOLUTION
def __mul__(self, other):
"""Multiply two tensors element-wise (NOT matrix multiplication).
TODO: Implement element-wise multiplication (same pattern as __add__).
APPROACH:
1. Check if other is a Tensor
2. If Tensor: multiply self.data * other.data
3. If scalar: multiply self.data * other
4. Return new Tensor with result
EXAMPLE:
>>> a = Tensor([1, 2, 3])
>>> b = Tensor([4, 5, 6])
>>> c = a * b
>>> print(c.data)
[ 4. 10. 18.]
HINT: Element-wise multiplication is *, not matrix multiplication (@)
"""
### BEGIN SOLUTION
if isinstance(other, Tensor):
return Tensor(self.data * other.data)
else:
return Tensor(self.data * other)
### END SOLUTION
def __truediv__(self, other):
"""Divide two tensors element-wise.
TODO: Implement element-wise division (same pattern as __add__).
APPROACH:
1. Check if other is a Tensor
2. If Tensor: divide self.data / other.data
3. If scalar: divide self.data / other
4. Return new Tensor with result
EXAMPLE:
>>> a = Tensor([4, 6, 8])
>>> b = Tensor([2, 2, 2])
>>> c = a / b
>>> print(c.data)
[2. 3. 4.]
HINT: Division creates float results automatically due to float32 dtype
"""
### BEGIN SOLUTION
if isinstance(other, Tensor):
return Tensor(self.data / other.data)
else:
return Tensor(self.data / other)
### END SOLUTION
def matmul(self, other):
"""Matrix multiplication of two tensors.
TODO: Implement matrix multiplication with shape validation.
APPROACH:
1. Validate other is a Tensor (raise TypeError if not)
2. Check for scalar cases (0D tensors) - use element-wise multiply
3. For 2D+ matrices: validate inner dimensions match (shape[-1] == shape[-2])
4. For 2D matrices: use explicit nested loops (educational)
5. For batched (3D+): use np.matmul for correctness
6. Return result wrapped in Tensor
EXAMPLE:
>>> a = Tensor([[1, 2], [3, 4]]) # 2Γ2
>>> b = Tensor([[5, 6], [7, 8]]) # 2Γ2
>>> c = a.matmul(b)
>>> print(c.data)
[[19. 22.]
[43. 50.]]
HINTS:
- Inner dimensions must match: (M, K) @ (K, N) = (M, N)
- For 2D case: use np.dot(a[i, :], b[:, j]) for each output element
- Raise ValueError with clear message if shapes incompatible
"""
### BEGIN SOLUTION
if not isinstance(other, Tensor):
raise TypeError(f"Expected Tensor for matrix multiplication, got {type(other)}")
if self.shape == () or other.shape == ():
return Tensor(self.data * other.data)
if len(self.shape) == 0 or len(other.shape) == 0:
return Tensor(self.data * other.data)
if len(self.shape) >= 2 and len(other.shape) >= 2:
if self.shape[-1] != other.shape[-2]:
raise ValueError(
f"Cannot perform matrix multiplication: {self.shape} @ {other.shape}. "
f"Inner dimensions must match: {self.shape[-1]} β {other.shape[-2]}"
)
# Educational implementation: explicit loops to show what matrix multiplication does
# This is intentionally slower than np.matmul to demonstrate the value of vectorization
# In Module 17 (Acceleration), students will learn to use optimized BLAS operations
a = self.data
b = other.data
# Handle 2D matrices with explicit loops (educational)
if len(a.shape) == 2 and len(b.shape) == 2:
M, K = a.shape
K2, N = b.shape
result_data = np.zeros((M, N), dtype=a.dtype)
# Explicit nested loops - students can see exactly what's happening!
# Each output element is a dot product of a row from A and a column from B
for i in range(M):
for j in range(N):
# Dot product of row i from A with column j from B
result_data[i, j] = np.dot(a[i, :], b[:, j])
else:
# For batched operations (3D+), use np.matmul for correctness
# Students will understand this once they grasp the 2D case
result_data = np.matmul(a, b)
return Tensor(result_data)
### END SOLUTION
def __matmul__(self, other):
"""Enable @ operator for matrix multiplication."""
return self.matmul(other)
def __getitem__(self, key):
"""Enable indexing and slicing operations on Tensors.
TODO: Implement indexing and slicing that returns a new Tensor.
APPROACH:
1. Use NumPy indexing: self.data[key]
2. If result is not an ndarray, wrap in np.array
3. Return result wrapped in new Tensor
EXAMPLE:
>>> t = Tensor([[1, 2, 3], [4, 5, 6]])
>>> row = t[0] # First row
>>> print(row.data)
[1. 2. 3.]
>>> element = t[0, 1] # Single element
>>> print(element.data)
2.0
HINT: NumPy's indexing already handles all complex cases (slicing, fancy indexing)
"""
### BEGIN SOLUTION
result_data = self.data[key]
if not isinstance(result_data, np.ndarray):
result_data = np.array(result_data)
return Tensor(result_data)
### END SOLUTION
def reshape(self, *shape):
"""Reshape tensor to new dimensions.
TODO: Reshape tensor while preserving total element count.
APPROACH:
1. Handle both reshape(2, 3) and reshape((2, 3)) calling styles
2. If -1 in shape, infer that dimension from total size
3. Validate total elements match: np.prod(new_shape) == self.size
4. Use np.reshape to create new view
5. Return result wrapped in new Tensor
EXAMPLE:
>>> t = Tensor([1, 2, 3, 4, 5, 6])
>>> reshaped = t.reshape(2, 3)
>>> print(reshaped.data)
[[1. 2. 3.]
[4. 5. 6.]]
>>> auto = t.reshape(2, -1) # Infers -1 as 3
>>> print(auto.shape)
(2, 3)
HINTS:
- Use isinstance(shape[0], (tuple, list)) to detect tuple input
- For -1: unknown_dim = self.size // known_size
- Raise ValueError if total elements don't match
"""
### BEGIN SOLUTION
if len(shape) == 1 and isinstance(shape[0], (tuple, list)):
new_shape = tuple(shape[0])
else:
new_shape = shape
if -1 in new_shape:
if new_shape.count(-1) > 1:
raise ValueError("Can only specify one unknown dimension with -1")
known_size = 1
unknown_idx = new_shape.index(-1)
for i, dim in enumerate(new_shape):
if i != unknown_idx:
known_size *= dim
unknown_dim = self.size // known_size
new_shape = list(new_shape)
new_shape[unknown_idx] = unknown_dim
new_shape = tuple(new_shape)
if np.prod(new_shape) != self.size:
target_size = int(np.prod(new_shape))
raise ValueError(
f"Total elements must match: {self.size} β {target_size}"
)
reshaped_data = np.reshape(self.data, new_shape)
return Tensor(reshaped_data)
### END SOLUTION
def transpose(self, dim0=None, dim1=None):
"""Transpose tensor dimensions.
TODO: Swap tensor dimensions (default: swap last two dimensions).
APPROACH:
1. If no dims specified: swap last two dimensions (most common case)
2. For 1D tensors: return copy (no transpose needed)
3. If both dims specified: swap those specific dimensions
4. Use np.transpose with axes list to perform the swap
5. Return result wrapped in new Tensor
EXAMPLE:
>>> t = Tensor([[1, 2, 3], [4, 5, 6]]) # 2Γ3
>>> transposed = t.transpose()
>>> print(transposed.data)
[[1. 4.]
[2. 5.]
[3. 6.]] # 3Γ2
HINTS:
- Create axes list: [0, 1, 2, ...] then swap positions
- For default: axes[-2], axes[-1] = axes[-1], axes[-2]
- Use np.transpose(self.data, axes)
"""
### BEGIN SOLUTION
if dim0 is None and dim1 is None:
if len(self.shape) < 2:
return Tensor(self.data.copy())
else:
axes = list(range(len(self.shape)))
axes[-2], axes[-1] = axes[-1], axes[-2]
transposed_data = np.transpose(self.data, axes)
else:
if dim0 is None or dim1 is None:
raise ValueError("Both dim0 and dim1 must be specified")
axes = list(range(len(self.shape)))
axes[dim0], axes[dim1] = axes[dim1], axes[dim0]
transposed_data = np.transpose(self.data, axes)
return Tensor(transposed_data)
### END SOLUTION
def sum(self, axis=None, keepdims=False):
"""Sum tensor along specified axis.
TODO: Sum all elements or along specific axes.
APPROACH:
1. Use np.sum with axis and keepdims parameters
2. axis=None sums all elements (scalar result)
3. axis=N sums along dimension N
4. keepdims=True preserves original number of dimensions
5. Return result wrapped in Tensor
EXAMPLE:
>>> t = Tensor([[1, 2, 3], [4, 5, 6]])
>>> total = t.sum()
>>> print(total.data)
21.0
>>> col_sum = t.sum(axis=0)
>>> print(col_sum.data)
[5. 7. 9.]
HINT: np.sum(data, axis=axis, keepdims=keepdims) does all the work
"""
### BEGIN SOLUTION
result = np.sum(self.data, axis=axis, keepdims=keepdims)
return Tensor(result)
### END SOLUTION
def mean(self, axis=None, keepdims=False):
"""Compute mean of tensor along specified axis.
TODO: Calculate average of elements along axis (same pattern as sum).
APPROACH:
1. Use np.mean with axis and keepdims parameters
2. axis=None averages all elements
3. axis=N averages along dimension N
4. Return result wrapped in Tensor
EXAMPLE:
>>> t = Tensor([[1, 2, 3], [4, 5, 6]])
>>> avg = t.mean()
>>> print(avg.data)
3.5
>>> col_mean = t.mean(axis=0)
>>> print(col_mean.data)
[2.5 3.5 4.5]
HINT: Follow the same pattern as sum() but with np.mean
"""
### BEGIN SOLUTION
result = np.mean(self.data, axis=axis, keepdims=keepdims)
return Tensor(result)
### END SOLUTION
def max(self, axis=None, keepdims=False):
"""Find maximum values along specified axis.
TODO: Find maximum element(s) along axis (same pattern as sum).
APPROACH:
1. Use np.max with axis and keepdims parameters
2. axis=None finds maximum of all elements
3. axis=N finds maximum along dimension N
4. Return result wrapped in Tensor
EXAMPLE:
>>> t = Tensor([[1, 2, 3], [4, 5, 6]])
>>> maximum = t.max()
>>> print(maximum.data)
6.0
>>> row_max = t.max(axis=1)
>>> print(row_max.data)
[3. 6.]
HINT: Follow the same pattern as sum() and mean() but with np.max
"""
### BEGIN SOLUTION
result = np.max(self.data, axis=axis, keepdims=keepdims)
return Tensor(result)
### END SOLUTION
def sqrt(self):
"""Find square root along specified axis."""
result = np.sqrt(self.data)
return Tensor(result)
def repeat(self):
pass
# %% [markdown]
"""
### π§ͺ Unit Test: Tensor Creation
This test validates our Tensor constructor works correctly with various data types and properly initializes all attributes.
**What we're testing**: Basic tensor creation and attribute setting
**Why it matters**: Foundation for all other operations - if creation fails, nothing works
**Expected**: Tensor wraps data correctly with proper attributes and consistent dtype
"""
# %% nbgrader={"grade": true, "grade_id": "test-tensor-creation", "locked": true, "points": 10}
def test_unit_tensor_creation():
"""π§ͺ Test Tensor creation with various data types."""
print("π§ͺ Unit Test: Tensor Creation...")
# Test scalar creation
scalar = Tensor(5.0)
assert scalar.data == 5.0
assert scalar.shape == ()
assert scalar.size == 1
assert scalar.dtype == np.float32
# Test vector creation
vector = Tensor([1, 2, 3])
assert np.array_equal(vector.data, np.array([1, 2, 3], dtype=np.float32))
assert vector.shape == (3,)
assert vector.size == 3
# Test matrix creation
matrix = Tensor([[1, 2], [3, 4]])
assert np.array_equal(matrix.data, np.array([[1, 2], [3, 4]], dtype=np.float32))
assert matrix.shape == (2, 2)
assert matrix.size == 4
# Test 3D tensor creation
tensor_3d = Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
assert tensor_3d.shape == (2, 2, 2)
assert tensor_3d.size == 8
print("β
Tensor creation works correctly!")
if __name__ == "__main__":
test_unit_tensor_creation()
# %% [markdown]
"""
## ποΈ Element-wise Arithmetic Operations
Element-wise operations are the workhorses of neural network computation. They apply the same operation to corresponding elements in tensors, often with broadcasting to handle different shapes elegantly.
### Why Element-wise Operations Matter
In neural networks, element-wise operations appear everywhere:
- **Activation functions**: Apply ReLU, sigmoid to every element
- **Batch normalization**: Subtract mean, divide by std per element
- **Loss computation**: Compare predictions vs. targets element-wise
- **Gradient updates**: Add scaled gradients to parameters element-wise
### Element-wise Addition: The Foundation
Addition is the simplest and most fundamental operation. Understanding it deeply helps with all others.
```
Element-wise Addition Visual:
[1, 2, 3] + [4, 5, 6] = [1+4, 2+5, 3+6] = [5, 7, 9]
Matrix Addition:
[[1, 2]] [[5, 6]] [[1+5, 2+6]] [[6, 8]]
[[3, 4]] + [[7, 8]] = [[3+7, 4+8]] = [[10, 12]]
Broadcasting Addition (Matrix + Vector):
[[1, 2]] [10] [[1, 2]] [[10, 10]] [[11, 12]]
[[3, 4]] + [20] = [[3, 4]] + [[20, 20]] = [[23, 24]]
β β β β β
(2,2) (2,1) (2,2) broadcast result
Broadcasting Rules:
1. Start from rightmost dimension
2. Dimensions must be equal OR one must be 1 OR one must be missing
3. Missing dimensions are assumed to be 1
```
**Key Insight**: Broadcasting makes tensors of different shapes compatible by automatically expanding dimensions. This is crucial for batch processing where you often add a single bias vector to an entire batch of data.
**Memory Efficiency**: Broadcasting doesn't actually create expanded copies in memory - NumPy computes results on-the-fly, saving memory.
"""
# %% [markdown]
"""
### Subtraction, Multiplication, and Division
These operations follow the same pattern as addition, working element-wise with broadcasting support. Each serves specific purposes in neural networks:
```
Element-wise Operations in Neural Networks:
βββββββββββββββββββ¬ββββββββββββββββββ¬ββββββββββββββββββ¬ββββββββββββββββββ
β Subtraction β Multiplication β Division β Use Cases β
βββββββββββββββββββΌββββββββββββββββββΌββββββββββββββββββΌββββββββββββββββββ€
β [6,8] - [1,2] β [2,3] * [4,5] β [8,9] / [2,3] β β’ Gradient β
β = [5,6] β = [8,15] β = [4.0, 3.0] β computation β
β β β β β’ Normalization β
β Center data: β Gate values: β Scale features: β β’ Loss functionsβ
β x - mean β x * mask β x / std β β’ Attention β
βββββββββββββββββββ΄ββββββββββββββββββ΄ββββββββββββββββββ΄ββββββββββββββββββ
Broadcasting with Scalars (very common in ML):
[1, 2, 3] * 2 = [2, 4, 6] (scale all values)
[1, 2, 3] - 1 = [0, 1, 2] (shift all values)
[2, 4, 6] / 2 = [1, 2, 3] (normalize all values)
Real ML Example - Batch Normalization:
batch_data = [[1, 2], [3, 4], [5, 6]] # Shape: (3, 2)
mean = [3, 4] # Shape: (2,)
std = [2, 2] # Shape: (2,)
# Normalize: (x - mean) / std
normalized = (batch_data - mean) / std
# Broadcasting: (3,2) - (2,) = (3,2), then (3,2) / (2,) = (3,2)
```
**Performance Note**: Element-wise operations are highly optimized in NumPy and run efficiently on modern CPUs with vectorization (SIMD instructions).
"""
# %% [markdown]
"""
### π§ͺ Unit Test: Arithmetic Operations
This test validates our arithmetic operations work correctly with both tensor-tensor and tensor-scalar operations, including broadcasting behavior.
**What we're testing**: Addition, subtraction, multiplication, division with broadcasting
**Why it matters**: Foundation for neural network forward passes, batch processing, normalization
**Expected**: Operations work with both tensors and scalars, proper broadcasting alignment
"""
# %% nbgrader={"grade": true, "grade_id": "test-arithmetic", "locked": true, "points": 15}
def test_unit_arithmetic_operations():
"""π§ͺ Test arithmetic operations with broadcasting."""
print("π§ͺ Unit Test: Arithmetic Operations...")
# Test tensor + tensor
a = Tensor([1, 2, 3])
b = Tensor([4, 5, 6])
result = a + b
assert np.array_equal(result.data, np.array([5, 7, 9], dtype=np.float32))
# Test tensor + scalar (very common in ML)
result = a + 10
assert np.array_equal(result.data, np.array([11, 12, 13], dtype=np.float32))
# Test broadcasting with different shapes (matrix + vector)
matrix = Tensor([[1, 2], [3, 4]])
vector = Tensor([10, 20])
result = matrix + vector
expected = np.array([[11, 22], [13, 24]], dtype=np.float32)
assert np.array_equal(result.data, expected)
# Test subtraction (data centering)
result = b - a
assert np.array_equal(result.data, np.array([3, 3, 3], dtype=np.float32))
# Test multiplication (scaling)
result = a * 2
assert np.array_equal(result.data, np.array([2, 4, 6], dtype=np.float32))
# Test division (normalization)
result = b / 2
assert np.array_equal(result.data, np.array([2.0, 2.5, 3.0], dtype=np.float32))
# Test chaining operations (common in ML pipelines)
normalized = (a - 2) / 2 # Center and scale
expected = np.array([-0.5, 0.0, 0.5], dtype=np.float32)
assert np.allclose(normalized.data, expected)
print("β
Arithmetic operations work correctly!")
if __name__ == "__main__":
test_unit_arithmetic_operations()
# %% [markdown]
"""
## ποΈ Matrix Multiplication: The Heart of Neural Networks
Matrix multiplication is fundamentally different from element-wise multiplication. It's the operation that gives neural networks their power to transform and combine information across features.
### Why Matrix Multiplication is Central to ML
Every neural network layer essentially performs matrix multiplication:
```
Linear Layer (the building block of neural networks):
Input Features Γ Weight Matrix = Output Features
(N, D_in) Γ (D_in, D_out) = (N, D_out)
Real Example - Image Classification:
Flattened Image Γ Hidden Weights = Hidden Features
(32, 784) Γ (784, 256) = (32, 256)
β β β
32 images 784β256 transform 32 feature vectors
```
### Matrix Multiplication Visualization
```
Matrix Multiplication Process:
A (2Γ3) B (3Γ2) C (2Γ2)
β β β β β β
β 1 2 3 β β 7 8 β β 1Γ7+2Γ9+3Γ1 β β β
β β Γ β 9 1 β = β β = β 28 13β
β 4 5 6 β β 1 2 β β 4Γ7+5Γ9+6Γ1 β β 79 37β
β β β β β β β β
Computation Breakdown:
C[0,0] = A[0,:] Β· B[:,0] = [1,2,3] Β· [7,9,1] = 1Γ7 + 2Γ9 + 3Γ1 = 28
C[0,1] = A[0,:] Β· B[:,1] = [1,2,3] Β· [8,1,2] = 1Γ8 + 2Γ1 + 3Γ2 = 13
C[1,0] = A[1,:] Β· B[:,0] = [4,5,6] Β· [7,9,1] = 4Γ7 + 5Γ9 + 6Γ1 = 79
C[1,1] = A[1,:] Β· B[:,1] = [4,5,6] Β· [8,1,2] = 4Γ8 + 5Γ1 + 6Γ2 = 37
Key Rule: Inner dimensions must match!
A(m,n) @ B(n,p) = C(m,p)
β β
these must be equal
```
### Computational Complexity and Performance
```
Computational Cost:
For C = A @ B where A is (MΓK), B is (KΓN):
- Multiplications: M Γ N Γ K
- Additions: M Γ N Γ (K-1) β M Γ N Γ K
- Total FLOPs: β 2 Γ M Γ N Γ K
Example: (1000Γ1000) @ (1000Γ1000)
- FLOPs: 2 Γ 1000Β³ = 2 billion operations
- On 1 GHz CPU: ~2 seconds if no optimization
- With optimized BLAS: ~0.1 seconds (20Γ speedup!)
Memory Access Pattern:
A: MΓK (row-wise access) β Good cache locality
B: KΓN (column-wise) β Poor cache locality
C: MΓN (row-wise write) β Good cache locality
This is why optimized libraries like OpenBLAS, Intel MKL use:
- Blocking algorithms (process in cache-sized chunks)
- Vectorization (SIMD instructions)
- Parallelization (multiple cores)
```
### Neural Network Context
```
Multi-layer Neural Network:
Input (batch=32, features=784)
β W1: (784, 256)
Hidden1 (batch=32, features=256)
β W2: (256, 128)
Hidden2 (batch=32, features=128)
β W3: (128, 10)
Output (batch=32, classes=10)
Each arrow represents a matrix multiplication:
- Forward pass: 3 matrix multiplications
- Backward pass: 3 more matrix multiplications (with transposes)
- Total: 6 matrix mults per forward+backward pass
For training batch: 32 Γ (784Γ256 + 256Γ128 + 128Γ10) FLOPs
= 32 Γ (200,704 + 32,768 + 1,280) = 32 Γ 234,752 = 7.5M FLOPs per batch
```
This is why GPU acceleration matters - modern GPUs can perform thousands of these operations in parallel!
"""
# %% [markdown]
"""
### π§ͺ Unit Test: Matrix Multiplication
This test validates matrix multiplication works correctly with proper shape checking and error handling.
**What we're testing**: Matrix multiplication with shape validation and edge cases
**Why it matters**: Core operation in neural networks (linear layers, attention mechanisms)
**Expected**: Correct results for valid shapes, clear error messages for invalid shapes
"""
# %% nbgrader={"grade": true, "grade_id": "test-matmul", "locked": true, "points": 15}
def test_unit_matrix_multiplication():
"""π§ͺ Test matrix multiplication operations."""
print("π§ͺ Unit Test: Matrix Multiplication...")
# Test 2Γ2 matrix multiplication (basic case)
a = Tensor([[1, 2], [3, 4]]) # 2Γ2
b = Tensor([[5, 6], [7, 8]]) # 2Γ2
result = a.matmul(b)
# Expected: [[1Γ5+2Γ7, 1Γ6+2Γ8], [3Γ5+4Γ7, 3Γ6+4Γ8]] = [[19, 22], [43, 50]]
expected = np.array([[19, 22], [43, 50]], dtype=np.float32)
assert np.array_equal(result.data, expected)
# Test rectangular matrices (common in neural networks)
c = Tensor([[1, 2, 3], [4, 5, 6]]) # 2Γ3 (like batch_size=2, features=3)
d = Tensor([[7, 8], [9, 10], [11, 12]]) # 3Γ2 (like features=3, outputs=2)
result = c.matmul(d)
# Expected: [[1Γ7+2Γ9+3Γ11, 1Γ8+2Γ10+3Γ12], [4Γ7+5Γ9+6Γ11, 4Γ8+5Γ10+6Γ12]]
expected = np.array([[58, 64], [139, 154]], dtype=np.float32)
assert np.array_equal(result.data, expected)
# Test matrix-vector multiplication (common in forward pass)
matrix = Tensor([[1, 2, 3], [4, 5, 6]]) # 2Γ3
vector = Tensor([1, 2, 3]) # 3Γ1 (conceptually)
result = matrix.matmul(vector)
# Expected: [1Γ1+2Γ2+3Γ3, 4Γ1+5Γ2+6Γ3] = [14, 32]
expected = np.array([14, 32], dtype=np.float32)
assert np.array_equal(result.data, expected)
# Test shape validation - should raise clear error
try:
incompatible_a = Tensor([[1, 2]]) # 1Γ2
incompatible_b = Tensor([[1], [2], [3]]) # 3Γ1
incompatible_a.matmul(incompatible_b) # 1Γ2 @ 3Γ1 should fail (2 β 3)
assert False, "Should have raised ValueError for incompatible shapes"
except ValueError as e:
assert "Inner dimensions must match" in str(e)
assert "2 β 3" in str(e) # Should show specific dimensions
print("β
Matrix multiplication works correctly!")
if __name__ == "__main__":
test_unit_matrix_multiplication()
# %% [markdown]
"""
## ποΈ Shape Manipulation: Reshape and Transpose
Neural networks constantly change tensor shapes to match layer requirements. Understanding these operations is crucial for data flow through networks.
### Why Shape Manipulation Matters
Real neural networks require constant shape changes:
```
CNN Data Flow Example:
Input Image: (32, 3, 224, 224) # batch, channels, height, width
β Convolutional layers
Feature Maps: (32, 512, 7, 7) # batch, features, spatial
β Global Average Pool
Pooled: (32, 512, 1, 1) # batch, features, 1, 1
β Flatten for classifier
Flattened: (32, 512) # batch, features
β Linear classifier
Output: (32, 1000) # batch, classes
Each β involves reshape or view operations!
```
### Reshape: Changing Interpretation of the Same Data
```
Reshaping (changing dimensions without changing data):
Original: [1, 2, 3, 4, 5, 6] (shape: (6,))
β reshape(2, 3)
Result: [[1, 2, 3], (shape: (2, 3))
[4, 5, 6]]
Memory Layout (unchanged):
Before: [1][2][3][4][5][6]
After: [1][2][3][4][5][6] β Same memory, different interpretation
Key Insight: Reshape is O(1) operation - no data copying!
Just changes how we interpret the memory layout.
Common ML Reshapes:
βββββββββββββββββββββββ¬ββββββββββββββββββββββ¬ββββββββββββββββββββββ
β Flatten for MLP β Unflatten for CNN β Batch Dimension β
βββββββββββββββββββββββΌββββββββββββββββββββββΌββββββββββββββββββββββ€
β (N,H,W,C) β (N,HΓWΓC) β (N,D) β (N,H,W,C) β (H,W) β (1,H,W) β
β Images to vectors β Vectors to images β Add batch dimension β
βββββββββββββββββββββββ΄ββββββββββββββββββββββ΄ββββββββββββββββββββββ
```
### Transpose: Swapping Dimensions
```
Transposing (swapping dimensions - data rearrangement):
Original: [[1, 2, 3], (shape: (2, 3))
[4, 5, 6]]
β transpose()
Result: [[1, 4], (shape: (3, 2))
[2, 5],
[3, 6]]
Memory Layout (rearranged):
Before: [1][2][3][4][5][6]
After: [1][4][2][5][3][6] β Data actually moves in memory
Key Insight: Transpose involves data movement - more expensive than reshape.
Neural Network Usage:
βββββββββββββββββββββββ¬ββββββββββββββββββββββ¬ββββββββββββββββββββββ
β Weight Matrices β Attention Mechanism β Gradient Computationβ
βββββββββββββββββββββββΌββββββββββββββββββββββΌββββββββββββββββββββββ€
β Forward: X @ W β Q @ K^T attention β βL/βW = X^T @ βL/βY β
β Backward: X @ W^T β scores β β
βββββββββββββββββββββββ΄ββββββββββββββββββββββ΄ββββββββββββββββββββββ
```
### Performance Implications
```
Operation Performance (for 1000Γ1000 matrix):
βββββββββββββββββββ¬βββββββββββββββ¬ββββββββββββββββββ¬ββββββββββββββββββ
β Operation β Time β Memory Access β Cache Behavior β
βββββββββββββββββββΌβββββββββββββββΌββββββββββββββββββΌββββββββββββββββββ€
β reshape() β ~0.001 ms β No data copy β No cache impact β
β transpose() β ~10 ms β Full data copy β Poor locality β
β view() (future) β ~0.001 ms β No data copy β No cache impact β
βββββββββββββββββββ΄βββββββββββββββ΄ββββββββββββββββββ΄ββββββββββββββββββ
Why transpose() is slower:
- Must rearrange data in memory
- Poor cache locality (accessing columns)
- Can't be parallelized easily
```
This is why frameworks like PyTorch often use "lazy" transpose operations that defer the actual data movement until necessary.
"""
# %% [markdown]
"""
### π§ͺ Unit Test: Shape Manipulation
This test validates reshape and transpose operations work correctly with validation and edge cases.
**What we're testing**: Reshape and transpose operations with proper error handling
**Why it matters**: Essential for data flow in neural networks, CNN/RNN architectures
**Expected**: Correct shape changes, proper error handling for invalid operations
"""
# %% nbgrader={"grade": true, "grade_id": "test-shape-ops", "locked": true, "points": 15}
def test_unit_shape_manipulation():
"""π§ͺ Test reshape and transpose operations."""
print("π§ͺ Unit Test: Shape Manipulation...")
# Test basic reshape (flatten β matrix)
tensor = Tensor([1, 2, 3, 4, 5, 6]) # Shape: (6,)
reshaped = tensor.reshape(2, 3) # Shape: (2, 3)
assert reshaped.shape == (2, 3)
expected = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
assert np.array_equal(reshaped.data, expected)
# Test reshape with tuple (alternative calling style)
reshaped2 = tensor.reshape((3, 2)) # Shape: (3, 2)
assert reshaped2.shape == (3, 2)
expected2 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
assert np.array_equal(reshaped2.data, expected2)
# Test reshape with -1 (automatic dimension inference)
auto_reshaped = tensor.reshape(2, -1) # Should infer -1 as 3
assert auto_reshaped.shape == (2, 3)
# Test reshape validation - should raise error for incompatible sizes
try:
tensor.reshape(2, 2) # 6 elements can't fit in 2Γ2=4
assert False, "Should have raised ValueError"
except ValueError as e:
assert "Total elements must match" in str(e)
assert "6 β 4" in str(e)
# Test matrix transpose (most common case)
matrix = Tensor([[1, 2, 3], [4, 5, 6]]) # (2, 3)
transposed = matrix.transpose() # (3, 2)
assert transposed.shape == (3, 2)
expected = np.array([[1, 4], [2, 5], [3, 6]], dtype=np.float32)
assert np.array_equal(transposed.data, expected)
# Test 1D transpose (should be identity)
vector = Tensor([1, 2, 3])
vector_t = vector.transpose()
assert np.array_equal(vector.data, vector_t.data)
# Test specific dimension transpose
tensor_3d = Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # (2, 2, 2)
swapped = tensor_3d.transpose(0, 2) # Swap first and last dimensions
assert swapped.shape == (2, 2, 2) # Same shape but data rearranged
# Test neural network reshape pattern (flatten for MLP)
batch_images = Tensor(np.random.rand(2, 3, 4)) # (batch=2, height=3, width=4)
flattened = batch_images.reshape(2, -1) # (batch=2, features=12)
assert flattened.shape == (2, 12)
print("β
Shape manipulation works correctly!")
if __name__ == "__main__":
test_unit_shape_manipulation()
# %% [markdown]
"""
## ποΈ Reduction Operations: Aggregating Information
Reduction operations collapse dimensions by aggregating data, which is essential for computing statistics, losses, and preparing data for different layers.
### Why Reductions are Crucial in ML
Reduction operations appear throughout neural networks:
```
Common ML Reduction Patterns:
βββββββββββββββββββββββ¬ββββββββββββββββββββββ¬ββββββββββββββββββββββ
β Loss Computation β Batch Normalization β Global Pooling β
βββββββββββββββββββββββΌββββββββββββββββββββββΌββββββββββββββββββββββ€
β Per-sample losses β β Batch statistics β β Feature maps β β
β Single batch loss β Normalization β Single features β
β β β β
β losses.mean() β batch.mean(axis=0) β fmaps.mean(axis=(2,3))β
β (N,) β scalar β (N,D) β (D,) β (N,C,H,W) β (N,C) β
βββββββββββββββββββββββ΄ββββββββββββββββββββββ΄ββββββββββββββββββββββ
Real Examples:
β’ Cross-entropy loss: -log(predictions).mean() [average over batch]
β’ Batch norm: (x - x.mean()) / x.std() [normalize each feature]
β’ Global avg pool: features.mean(dim=(2,3)) [spatial β scalar per channel]
```
### Understanding Axis Operations
```
Visual Axis Understanding:
Matrix: [[1, 2, 3], All reductions operate on this data
[4, 5, 6]] Shape: (2, 3)
axis=0 (β)
βββββββββββ
axis=1 β 1 2 3 β β axis=1 reduces across columns (β)
(β) β 4 5 6 β β Result shape: (2,) [one value per row]
βββββββββββ
β β β
axis=0 reduces down rows (β)
Result shape: (3,) [one value per column]
Reduction Results:
ββ .sum() β 21 (sum all: 1+2+3+4+5+6)
ββ .sum(axis=0) β [5, 7, 9] (sum columns: [1+4, 2+5, 3+6])
ββ .sum(axis=1) β [6, 15] (sum rows: [1+2+3, 4+5+6])
ββ .mean() β 3.5 (average all: 21/6)
ββ .mean(axis=0) β [2.5, 3.5, 4.5] (average columns)
ββ .max() β 6 (maximum element)
3D Tensor Example (batch, height, width):
data.shape = (2, 3, 4) # 2 samples, 3Γ4 images
β
ββ .sum(axis=0) β (3, 4) # Sum across batch dimension
ββ .sum(axis=1) β (2, 4) # Sum across height dimension
ββ .sum(axis=2) β (2, 3) # Sum across width dimension
ββ .sum(axis=(1,2)) β (2,) # Sum across both spatial dims (global pool)
```
### Memory and Performance Considerations
```
Reduction Performance:
βββββββββββββββββββ¬βββββββββββββββ¬ββββββββββββββββββ¬ββββββββββββββββββ
β Operation β Time Complex β Memory Access β Cache Behavior β
βββββββββββββββββββΌβββββββββββββββΌββββββββββββββββββΌββββββββββββββββββ€
β .sum() β O(N) β Sequential read β Excellent β
β .sum(axis=0) β O(N) β Column access β Poor (strided) β
β .sum(axis=1) β O(N) β Row access β Excellent β
β .mean() β O(N) β Sequential read β Excellent β
β .max() β O(N) β Sequential read β Excellent β
βββββββββββββββββββ΄βββββββββββββββ΄ββββββββββββββββββ΄ββββββββββββββββββ
Why axis=0 is slower:
- Accesses elements with large strides
- Poor cache locality (jumping rows)
- Less vectorization-friendly
Optimization strategies:
- Prefer axis=-1 operations when possible
- Use keepdims=True to maintain shape for broadcasting
- Consider reshaping before reduction for better cache behavior
```
"""
# %% [markdown]
"""
### π§ͺ Unit Test: Reduction Operations
This test validates reduction operations work correctly with axis control and maintain proper shapes.
**What we're testing**: Sum, mean, max operations with axis parameter and keepdims
**Why it matters**: Essential for loss computation, batch processing, and pooling operations
**Expected**: Correct reduction along specified axes with proper shape handling
"""
# %% nbgrader={"grade": true, "grade_id": "test-reductions", "locked": true, "points": 10}
def test_unit_reduction_operations():
"""π§ͺ Test reduction operations."""
print("π§ͺ Unit Test: Reduction Operations...")
matrix = Tensor([[1, 2, 3], [4, 5, 6]]) # Shape: (2, 3)
# Test sum all elements (common for loss computation)
total = matrix.sum()
assert total.data == 21.0 # 1+2+3+4+5+6
assert total.shape == () # Scalar result
# Test sum along axis 0 (columns) - batch dimension reduction
col_sum = matrix.sum(axis=0)
expected_col = np.array([5, 7, 9], dtype=np.float32) # [1+4, 2+5, 3+6]
assert np.array_equal(col_sum.data, expected_col)
assert col_sum.shape == (3,)
# Test sum along axis 1 (rows) - feature dimension reduction
row_sum = matrix.sum(axis=1)
expected_row = np.array([6, 15], dtype=np.float32) # [1+2+3, 4+5+6]
assert np.array_equal(row_sum.data, expected_row)
assert row_sum.shape == (2,)
# Test mean (average loss computation)
avg = matrix.mean()
assert np.isclose(avg.data, 3.5) # 21/6
assert avg.shape == ()
# Test mean along axis (batch normalization pattern)
col_mean = matrix.mean(axis=0)
expected_mean = np.array([2.5, 3.5, 4.5], dtype=np.float32) # [5/2, 7/2, 9/2]
assert np.allclose(col_mean.data, expected_mean)
# Test max (finding best predictions)
maximum = matrix.max()
assert maximum.data == 6.0
assert maximum.shape == ()
# Test max along axis (argmax-like operation)
row_max = matrix.max(axis=1)
expected_max = np.array([3, 6], dtype=np.float32) # [max(1,2,3), max(4,5,6)]
assert np.array_equal(row_max.data, expected_max)
# Test keepdims (important for broadcasting)
sum_keepdims = matrix.sum(axis=1, keepdims=True)
assert sum_keepdims.shape == (2, 1) # Maintains 2D shape
expected_keepdims = np.array([[6], [15]], dtype=np.float32)
assert np.array_equal(sum_keepdims.data, expected_keepdims)
# Test 3D reduction (simulating global average pooling)
tensor_3d = Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # (2, 2, 2)
spatial_mean = tensor_3d.mean(axis=(1, 2)) # Average across spatial dimensions
assert spatial_mean.shape == (2,) # One value per batch item
print("β
Reduction operations work correctly!")
if __name__ == "__main__":
test_unit_reduction_operations()
# %% [markdown]
"""
## π Systems Analysis: Memory Layout and Performance
Let's understand ONE key systems concept: **memory layout and cache behavior**.
This single analysis reveals why certain operations are fast while others are slow, and why framework designers make specific architectural choices.
"""
# %%
def analyze_memory_layout():
"""π Demonstrate cache effects with row vs column access patterns."""
print("π Analyzing Memory Access Patterns...")
print("=" * 60)
# Create a moderately-sized matrix (large enough to show cache effects)
size = 2000
matrix = Tensor(np.random.rand(size, size))
import time
print(f"\nTesting with {size}Γ{size} matrix ({matrix.size * BYTES_PER_FLOAT32 / MB_TO_BYTES:.1f} MB)")
print("-" * 60)
# Test 1: Row-wise access (cache-friendly)
# Memory layout: [row0][row1][row2]... stored contiguously
print("\n㪠Test 1: Row-wise Access (Cache-Friendly)")
start = time.time()
row_sums = []
for i in range(size):
row_sum = matrix.data[i, :].sum() # Access entire row sequentially
row_sums.append(row_sum)
row_time = time.time() - start
print(f" Time: {row_time*1000:.1f}ms")
print(f" Access pattern: Sequential (follows memory layout)")
# Test 2: Column-wise access (cache-unfriendly)
# Must jump between rows, poor spatial locality
print("\n㪠Test 2: Column-wise Access (Cache-Unfriendly)")
start = time.time()
col_sums = []
for j in range(size):
col_sum = matrix.data[:, j].sum() # Access entire column with large strides
col_sums.append(col_sum)
col_time = time.time() - start
print(f" Time: {col_time*1000:.1f}ms")
print(f" Access pattern: Strided (jumps {size * BYTES_PER_FLOAT32} bytes per element)")
# Calculate slowdown
slowdown = col_time / row_time
print("\n" + "=" * 60)
print(f"π PERFORMANCE IMPACT:")
print(f" Slowdown factor: {slowdown:.2f}Γ ({col_time/row_time:.1f}Γ slower)")
print(f" Cache misses cause {(slowdown-1)*100:.0f}% performance loss")
# Educational insights
print("\nπ‘ KEY INSIGHTS:")
print(f" 1. Memory layout matters: Row-major (C-style) storage is sequential")
print(f" 2. Cache lines are ~64 bytes: Row access loads nearby elements \"for free\"")
print(f" 3. Column access misses cache: Must reload from DRAM every time")
print(f" 4. This is O(n) algorithm but {slowdown:.1f}Γ different wall-clock time!")
print("\nπ REAL-WORLD IMPLICATIONS:")
print(f" β’ CNNs use NCHW format (channels sequential) for cache efficiency")
print(f" β’ Matrix multiplication optimized with blocking (tile into cache-sized chunks)")
print(f" β’ Transpose is expensive ({slowdown:.1f}Γ) because it changes memory layout")
print(f" β’ This is why GPU frameworks obsess over memory coalescing")
print("\n" + "=" * 60)
# Run the systems analysis
if __name__ == "__main__":
analyze_memory_layout()
# %% nbgrader={"grade": true, "grade_id": "test-sqrt", "locked": true, "points": 10}
def test_unit_sqrt():
"""π§ͺ Test square root operation."""
print("π§ͺ Unit Test: Square Root...")
# Test perfect squares
t = Tensor([1, 4, 9, 16])
result = t.sqrt()
expected = np.array([1, 2, 3, 4], dtype=np.float32)
assert np.array_equal(result.data, expected)
# Test shape preservation (Matrix)
matrix = Tensor([[4, 9], [16, 25]]) # Shape (2, 2)
result_matrix = matrix.sqrt()
expected_matrix = np.array([[2, 3], [4, 5]], dtype=np.float32)
assert result_matrix.shape == (2, 2)
assert np.array_equal(result_matrix.data, expected_matrix)
# Test Zero (Critical for numerical stability checks)
z = Tensor([0.0])
assert z.sqrt().data[0] == 0.0
# Test non-perfect squares (float precision)
t2 = Tensor([2.0])
# sqrt(2) approx 1.41421356
assert np.allclose(t2.sqrt().data, np.array([1.41421356], dtype=np.float32))
# Test Domain Error (Negative numbers)
# NumPy returns NaN (Not a Number) for sqrt(-1), TinyTorch should pass this through
neg = Tensor([-1.0])
result_neg = neg.sqrt()
assert np.isnan(result_neg.data)[0], "Sqrt of negative should be NaN"
print("β
Square root works correctly!")
if __name__ == "__main__":
test_unit_sqrt()
# %% [markdown]
"""
## π§ Integration: Bringing It Together
Let's test how our Tensor operations work together in realistic scenarios that mirror neural network computations. This integration demonstrates that our individual operations combine correctly for complex ML workflows.
### Neural Network Layer Simulation
The fundamental building block of neural networks is the linear transformation: **y = xW + b**
```
Linear Layer Forward Pass: y = xW + b
Input Features β Weight Matrix β Matrix Multiply β Add Bias β Output Features
(batch, in) (in, out) (batch, out) (batch, out) (batch, out)
Step-by-Step Breakdown:
1. Input: X shape (batch_size, input_features)
2. Weight: W shape (input_features, output_features)
3. Matmul: XW shape (batch_size, output_features)
4. Bias: b shape (output_features,)
5. Result: XW + b shape (batch_size, output_features)
Example Flow:
Input: [[1, 2, 3], Weight: [[0.1, 0.2], Bias: [0.1, 0.2]
[4, 5, 6]] [0.3, 0.4],
(2, 3) [0.5, 0.6]]
(3, 2)
Step 1: Matrix Multiply
[[1, 2, 3]] @ [[0.1, 0.2]] = [[1Γ0.1+2Γ0.3+3Γ0.5, 1Γ0.2+2Γ0.4+3Γ0.6]]
[[4, 5, 6]] [[0.3, 0.4]] [[4Γ0.1+5Γ0.3+6Γ0.5, 4Γ0.2+5Γ0.4+6Γ0.6]]
[[0.5, 0.6]]
= [[1.6, 2.6],
[4.9, 6.8]]
Step 2: Add Bias (Broadcasting)
[[1.6, 2.6]] + [0.1, 0.2] = [[1.7, 2.8],
[4.9, 6.8]] [5.0, 7.0]]
This is the foundation of every neural network layer!
```
### Why This Integration Matters
This simulation shows how our basic operations combine to create the computational building blocks of neural networks:
- **Matrix Multiplication**: Transforms input features into new feature space
- **Broadcasting Addition**: Applies learned biases efficiently across batches
- **Shape Handling**: Ensures data flows correctly through layers
- **Memory Management**: Creates new tensors without corrupting inputs
Every layer in a neural network - from simple MLPs to complex transformers - uses this same pattern.
"""
# %% [markdown]
"""
## π§ͺ Module Integration Test
Final validation that everything works together correctly before module completion.
"""
# %% nbgrader={"grade": true, "grade_id": "module-integration", "locked": true, "points": 20}
def test_module():
"""π§ͺ Module Test: Complete Integration
Comprehensive test of entire module functionality.
This final test runs befre module summary to ensure:
- All unit tests pass
- Functions work together correctly
- Module is ready for integration with TinyTorch
"""
print("π§ͺ RUNNING MODULE INTEGRATION TEST")
print("=" * 50)
# Run all unit tests
print("Running unit tests...")
test_unit_tensor_creation()
test_unit_arithmetic_operations()
test_unit_matrix_multiplication()
test_unit_shape_manipulation()
test_unit_reduction_operations()
test_unit_sqrt()
print("\nRunning integration scenarios...")
# Test realistic neural network computation
print("π§ͺ Integration Test: Two-Layer Neural Network...")
# Create input data (2 samples, 3 features)
x = Tensor([[1, 2, 3], [4, 5, 6]])
# First layer: 3 inputs β 4 hidden units
W1 = Tensor([[0.1, 0.2, 0.3, 0.4],
[0.5, 0.6, 0.7, 0.8],
[0.9, 1.0, 1.1, 1.2]])
b1 = Tensor([0.1, 0.2, 0.3, 0.4])
# Forward pass: hidden = xW1 + b1
hidden = x.matmul(W1) + b1
assert hidden.shape == (2, 4), f"Expected (2, 4), got {hidden.shape}"
# Second layer: 4 hidden β 2 outputs
W2 = Tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]])
b2 = Tensor([0.1, 0.2])
# Output layer: output = hiddenW2 + b2
output = hidden.matmul(W2) + b2
assert output.shape == (2, 2), f"Expected (2, 2), got {output.shape}"
# Verify data flows correctly (no NaN, reasonable values)
assert not np.isnan(output.data).any(), "Output contains NaN values"
assert np.isfinite(output.data).all(), "Output contains infinite values"
print("β
Two-layer neural network computation works!")
# Test complex shape manipulations
print("π§ͺ Integration Test: Complex Shape Operations...")
data = Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
# Reshape to 3D tensor (simulating batch processing)
tensor_3d = data.reshape(2, 2, 3) # (batch=2, height=2, width=3)
assert tensor_3d.shape == (2, 2, 3)
# Global average pooling simulation
pooled = tensor_3d.mean(axis=(1, 2)) # Average across spatial dimensions
assert pooled.shape == (2,), f"Expected (2,), got {pooled.shape}"
# Flatten for MLP
flattened = tensor_3d.reshape(2, -1) # (batch, features)
assert flattened.shape == (2, 6)
# Transpose for different operations
transposed = tensor_3d.transpose() # Should transpose last two dims
assert transposed.shape == (2, 3, 2)
print("β
Complex shape operations work!")
# Test broadcasting edge cases
print("π§ͺ Integration Test: Broadcasting Edge Cases...")
# Scalar broadcasting
scalar = Tensor(5.0)
vector = Tensor([1, 2, 3])
result = scalar + vector # Should broadcast scalar to vector shape
expected = np.array([6, 7, 8], dtype=np.float32)
assert np.array_equal(result.data, expected)
# Matrix + vector broadcasting
matrix = Tensor([[1, 2], [3, 4]])
vec = Tensor([10, 20])
result = matrix + vec
expected = np.array([[11, 22], [13, 24]], dtype=np.float32)
assert np.array_equal(result.data, expected)
print("β
Broadcasting edge cases work!")
print("\n" + "=" * 50)
print("π ALL TESTS PASSED! Module ready for export.")
print("Run: tito module complete 01_tensor")
# Run comprehensive module test
if __name__ == "__main__":
test_module()
# %% [markdown]
"""
## π€ ML Systems Reflection Questions
Answer these to deepen your understanding of tensor operations and their systems implications:
### 1. Memory Layout and Cache Performance
**Question**: How does row-major vs column-major storage affect cache performance in tensor operations?
**Consider**:
- What happens when you access matrix elements sequentially vs. with large strides?
- Why did our analysis show column-wise access being ~2-3Γ slower than row-wise?
- How would this affect the design of a convolutional neural network's memory layout?
**Real-world context**: PyTorch uses NCHW (batch, channels, height, width) format specifically because accessing channels sequentially has better cache locality than NHWC format.
---
### 2. Batch Processing and Scaling
**Question**: If you double the batch size in a neural network, what happens to memory usage? What about computation time?
**Consider**:
- A linear layer with input (batch, features): y = xW + b
- Memory for: input tensor, weight matrix, output tensor, intermediate results
- How does matrix multiplication time scale with batch size?
**Think about**:
- If (32, 784) @ (784, 256) takes 10ms, how long does (64, 784) @ (784, 256) take?
- Does doubling batch size double memory usage? Why or why not?
- What are the trade-offs between large and small batch sizes?
---
### 3. Data Type Precision and Memory
**Question**: What's the memory difference between float64 and float32 for a (1000, 1000) tensor? When would you choose each?
**Calculate**:
- float64: 8 bytes per element
- float32: 4 bytes per element
- Total elements in (1000, 1000): ___________
- Memory difference: ___________
**Trade-offs to consider**:
- Training accuracy vs. memory consumption
- GPU memory limits (often 8-16GB for consumer GPUs)
- Numerical stability in gradient computation
- Inference speed on mobile devices
---
### 4. Production Scale: Memory Requirements
**Question**: A GPT-3-scale model has 175 billion parameters. How much RAM is needed just to store the weights in float32? What about with an optimizer like Adam?
**Calculate**:
- Parameters: 175 Γ 10^9
- Bytes per float32: 4
- Weight memory: ___________GB
**Additional memory for Adam optimizer**:
- Adam stores: parameters, gradients, first moment (m), second moment (v)
- Total multiplier: 4Γ the parameter count
- Total with Adam: ___________GB
**Real-world implications**:
- Why do we need 8Γ A100 GPUs (40GB each) for training?
- What is mixed-precision training (float16/bfloat16)?
- How does gradient checkpointing help?
---
### 5. Hardware Awareness: GPU Efficiency
**Question**: Why do GPUs strongly prefer operations on large tensors over many small ones?
**Consider these scenarios**:
- **Scenario A**: 1000 separate (10, 10) matrix multiplications
- **Scenario B**: 1 batched (1000, 10, 10) matrix multiplication
**Think about**:
- GPU kernel launch overhead (~5-10 microseconds per launch)
- Thread parallelism utilization (GPUs have 1000s of cores)
- Memory transfer costs (CPUβGPU has ~10GB/s bandwidth, GPU memory has ~900GB/s)
- When is the GPU actually doing computation vs. waiting?
**Design principle**: Batch operations together to amortize overhead and maximize parallelism.
---
### Bonus Challenge: Optimization Analysis
**Scenario**: You're implementing a custom activation function that will be applied to every element in a tensor. You have two implementation choices:
**Option A**: Python loop over each element
```python
def custom_activation(tensor):
result = np.empty_like(tensor.data)
for i in range(tensor.data.size):
result.flat[i] = complex_math_function(tensor.data.flat[i])
return Tensor(result)
```
**Option B**: NumPy vectorized operation
```python
def custom_activation(tensor):
return Tensor(complex_math_function(tensor.data))
```
**Questions**:
1. For a (1000, 1000) tensor, estimate the speedup of Option B vs Option A
2. Why is vectorization faster even though both are O(n) operations?
3. What if the tensor is tiny (10, 10) - does the answer change?
4. How would this change if we move to GPU computation?
**Key insight**: Algorithmic complexity (Big-O) doesn't tell the whole performance story. Constant factors from vectorization, cache behavior, and parallelism dominate in practice.
"""
# %% [markdown]
"""
## β Aha Moment: Your Tensor Works Like NumPy
**What you built:** A complete Tensor class with arithmetic operations and matrix multiplication.
**Why it matters:** Your Tensor is the foundation of everything to come. Every neural network
operationβfrom simple addition to complex attention mechanismsβwill use this class. The fact
that it works exactly like NumPy means you've built something production-ready.
Your Tensor is ready for machine learning operations.
Every operation you just implemented will be called millions of times during training!
"""
# %%
def demo_tensor():
"""π― See your Tensor work just like NumPy."""
print("π― AHA MOMENT: Your Tensor Works Like NumPy")
print("=" * 45)
# Create tensors
a = Tensor(np.array([1, 2, 3]))
b = Tensor(np.array([4, 5, 6]))
# Tensor operations
tensor_sum = a + b
tensor_prod = a * b
# NumPy equivalents
np_sum = np.array([1, 2, 3]) + np.array([4, 5, 6])
np_prod = np.array([1, 2, 3]) * np.array([4, 5, 6])
print(f"Tensor a + b: {tensor_sum.data}")
print(f"NumPy a + b: {np_sum}")
print(f"Match: {np.allclose(tensor_sum.data, np_sum)}")
print(f"\nTensor a * b: {tensor_prod.data}")
print(f"NumPy a * b: {np_prod}")
print(f"Match: {np.allclose(tensor_prod.data, np_prod)}")
print("\nβ¨ Your Tensor is NumPy-compatibleβready for ML!")
# %%
if __name__ == "__main__":
test_module()
print("\n")
demo_tensor()
# %% [markdown]
"""
## π MODULE SUMMARY: Tensor Foundation
Congratulations! You've built the foundational Tensor class that powers all machine learning operations!
### Key Accomplishments
- **Built a complete Tensor class** with arithmetic operations, matrix multiplication, and shape manipulation
- **Implemented broadcasting semantics** that match NumPy for automatic shape alignment
- **Created reduction operations** (sum, mean, max) for loss computation and pooling
- **Added comprehensive ASCII diagrams** showing tensor operations visually
- **All tests pass β
** (validated by `test_module()`)
### Systems Insights Discovered
- **Memory scaling**: Matrix operations create new tensors (3Γ memory during computation)
- **Broadcasting efficiency**: NumPy's automatic shape alignment vs. explicit operations
- **Cache behavior**: Row-wise access is faster than column-wise due to memory layout
- **Shape validation trade-offs**: Clear errors vs. performance in tight loops
Export with: `tito module complete 01_tensor`
""" |