Adrian Gabriel
latest changs
108a2f3
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.17.1
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown]
"""
# Module 03: Layers - Building Blocks of Neural Networks
Welcome to Module 03! You're about to build the fundamental building blocks that make neural networks possible.
## πŸ”— Prerequisites & Progress
**You've Built**: Tensor class (Module 01) with all operations and activations (Module 02)
**You'll Build**: Linear layers and Dropout regularization
**You'll Enable**: Multi-layer neural networks, trainable parameters, and forward passes
**Connection Map**:
```
Tensor β†’ Activations β†’ Layers β†’ Networks
(data) (intelligence) (building blocks) (architectures)
```
## πŸ“‹ Module Dependencies
**Prerequisites**: Modules 01 (Tensor) and 02 (Activations) must be completed
**External Dependencies**:
- `numpy` (for numerical operations)
**TinyTorch Dependencies**:
- **Module 01 (Tensor)**: Foundation for all layer computations
- Used for: Weight storage, input/output data structures, shape operations
- Required: Yes - layers operate on Tensor objects
- **Module 02 (Activations)**: Activation functions for testing layer integration
- Used for: ReLU, Sigmoid for testing layer compositions
- Required: Yes - layers are tested with activations
**Dependency Flow**:
```
Module 01 (Tensor) β†’ Module 02 (Activations) β†’ Module 03 (Layers) β†’ Module 04 (Losses)
↓ ↓ ↓ ↓
Foundation Nonlinearity Architecture Error Measurement
```
**Import Strategy**:
This module imports directly from the TinyTorch package (`from tinytorch.core.*`).
**Assumption**: Modules 01 (Tensor) and 02 (Activations) have been completed and exported to the package.
If you see import errors, ensure you've run `tito export` after completing previous modules.
## 🎯 Learning Objectives
By the end of this module, you will:
1. Implement Linear layers with proper weight initialization
2. Add Dropout for regularization during training
3. Understand parameter management and counting
4. Test individual layer components
Let's get started!
## πŸ“¦ Where This Code Lives in the Final Package
**Learning Side:** You work in modules/03_layers/layers_dev.py
**Building Side:** Code exports to tinytorch.core.layers
```python
# Final package structure:
from tinytorch.core.layers import Linear, Dropout # This module
from tinytorch.core.tensor import Tensor # Module 01 - foundation
from tinytorch.core.activations import ReLU, Sigmoid # Module 02 - intelligence
```
**Why this matters:**
- **Learning:** Complete layer system in one focused module for deep understanding
- **Production:** Proper organization like PyTorch's torch.nn with all layer building blocks together
- **Consistency:** All layer operations and parameter management in core.layers
- **Integration:** Works seamlessly with tensors and activations for complete neural networks
"""
# %% nbgrader={"grade": false, "grade_id": "imports", "solution": true}
#| default_exp core.layers
#| export
import numpy as np
# Import from TinyTorch package (previous modules must be completed and exported)
from .tensor import Tensor
from .activations import ReLU, Sigmoid
# Constants for weight initialization
XAVIER_SCALE_FACTOR = 1.0 # Xavier/Glorot initialization uses sqrt(1/fan_in)
HE_SCALE_FACTOR = 2.0 # He initialization uses sqrt(2/fan_in) for ReLU
# Constants for dropout
DROPOUT_MIN_PROB = 0.0 # Minimum dropout probability (no dropout)
DROPOUT_MAX_PROB = 1.0 # Maximum dropout probability (drop everything)
# %% [markdown]
"""
## πŸ’‘ Introduction: What are Neural Network Layers?
Neural network layers are the fundamental building blocks that transform data as it flows through a network. Each layer performs a specific computation:
- **Linear layers** apply learned transformations: `y = xW + b`
- **Dropout layers** randomly zero elements for regularization
Think of layers as processing stations in a factory:
```
Input Data β†’ Layer 1 β†’ Layer 2 β†’ Layer 3 β†’ Output
↓ ↓ ↓ ↓ ↓
Features Hidden Hidden Hidden Predictions
```
Each layer learns its own piece of the puzzle. Linear layers learn which features matter, while dropout prevents overfitting by forcing robustness.
"""
# %% [markdown]
"""
## πŸ“ Foundations: Mathematical Background
### Linear Layer Mathematics
A linear layer implements: **y = xW + b**
```
Input x (batch_size, in_features) @ Weight W (in_features, out_features) + Bias b (out_features)
= Output y (batch_size, out_features)
```
### Weight Initialization
Random initialization is crucial for breaking symmetry:
- **Xavier/Glorot**: Scale by sqrt(1/fan_in) for stable gradients
- **He**: Scale by sqrt(2/fan_in) for ReLU activation
- **Too small**: Gradients vanish, learning is slow
- **Too large**: Gradients explode, training unstable
### Parameter Counting
```
Linear(784, 256): 784 Γ— 256 + 256 = 200,960 parameters
Manual composition:
layer1 = Linear(784, 256) # 200,960 params
activation = ReLU() # 0 params
layer2 = Linear(256, 10) # 2,570 params
# Total: 203,530 params
```
Memory usage: 4 bytes/param Γ— 203,530 = ~814KB for weights alone
"""
# %% [markdown]
"""
## πŸ—οΈ Implementation: Building Layer Foundation
Let's build our layer system step by step. We'll implement two essential layer types:
1. **Linear Layer** - The workhorse of neural networks
2. **Dropout Layer** - Prevents overfitting
### Key Design Principles:
- All methods defined INSIDE classes (no monkey-patching)
- Forward methods return new tensors, preserving immutability
- parameters() method enables optimizer integration
- Gradient tracking will be added in Module 06 (Autograd)
"""
# %% [markdown]
"""
### πŸ—οΈ Layer Base Class - Foundation for All Layers
All neural network layers share common functionality: forward pass, parameter management, and callable interface. The base Layer class provides this consistent interface.
"""
# %% nbgrader={"grade": false, "grade_id": "layer-base", "solution": true}
#| export
class Layer:
"""
Base class for all neural network layers.
All layers should inherit from this class and implement:
- forward(x): Compute layer output
- parameters(): Return list of trainable parameters
The __call__ method is provided to make layers callable.
"""
def forward(self, x):
"""
Forward pass through the layer.
Args:
x: Input tensor
Returns:
Output tensor after transformation
"""
raise NotImplementedError("Subclasses must implement forward()")
def __call__(self, x, *args, **kwargs):
"""Allow layer to be called like a function."""
return self.forward(x, *args, **kwargs)
def parameters(self):
"""
Return list of trainable parameters.
Returns:
List of Tensor objects (weights and biases)
"""
return [] # Base class has no parameters
def __repr__(self):
"""String representation of the layer."""
return f"{self.__class__.__name__}()"
# %% [markdown]
"""
### πŸ—οΈ Linear Layer - The Foundation of Neural Networks
Linear layers (also called Dense or Fully Connected layers) are the fundamental building blocks of neural networks. They implement the mathematical operation:
**y = xW + b**
Where:
- **x**: Input features (what we know)
- **W**: Weight matrix (what we learn)
- **b**: Bias vector (adjusts the output)
- **y**: Output features (what we predict)
### Why Linear Layers Matter
Linear layers learn **feature combinations**. Each output neuron asks: "What combination of input features is most useful for my task?" The network discovers these combinations through training.
### Data Flow Visualization
```
Input Features Weight Matrix Bias Vector Output Features
[batch, in_feat] @ [in_feat, out_feat] + [out_feat] = [batch, out_feat]
Example: MNIST Digit Recognition
[32, 784] @ [784, 10] + [10] = [32, 10]
↑ ↑ ↑ ↑
32 images 784 pixels 10 classes 10 probabilities
to 10 classes adjustments per image
```
### Memory Layout
```
Linear(784, 256) Parameters:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Weight Matrix W β”‚ 784 Γ— 256 = 200,704 params
β”‚ [784, 256] float32 β”‚ Γ— 4 bytes = 802.8 KB
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Bias Vector b β”‚ 256 params
β”‚ [256] float32 β”‚ Γ— 4 bytes = 1.0 KB
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Total: 803.8 KB for one layer
```
"""
# %% nbgrader={"grade": false, "grade_id": "linear-layer", "solution": true}
#| export
class Linear(Layer):
"""
Linear (fully connected) layer: y = xW + b
This is the fundamental building block of neural networks.
Applies a linear transformation to incoming data.
"""
def __init__(self, in_features, out_features, bias=True):
"""
Initialize linear layer with proper weight initialization.
TODO: Initialize weights and bias with Xavier initialization
APPROACH:
1. Create weight matrix (out_features, in_features) with Xavier scaling
2. Create bias vector (out_features,) initialized to zeros if bias=True
3. Store as Tensor objects for use in forward pass
EXAMPLE:
>>> layer = Linear(784, 10) # MNIST classifier final layer
>>> print(layer.weight.shape)
(10, 784)
>>> print(layer.bias.shape)
(10,)
HINTS:
- Xavier init: scale = sqrt(1/in_features)
- Use np.random.randn() for normal distribution
- bias=None when bias=False
"""
### BEGIN SOLUTION
self.in_features = in_features
self.out_features = out_features
# Xavier/Glorot initialization for stable gradients
# Weight shape: (out_features, in_features) for W @ X computation
scale = np.sqrt(XAVIER_SCALE_FACTOR / in_features)
weight_data = np.random.randn(out_features, in_features) * scale
self.weight = Tensor(weight_data)#, requires_grad=True)
# Initialize bias to zeros or None
if bias:
bias_data = np.zeros(out_features)
self.bias = Tensor(bias_data)#, requires_grad=True)
else:
self.bias = None
### END SOLUTION
def forward(self, x):
"""
Forward pass through linear layer.
TODO: Implement y = Wx + b (conceptually W @ x for each sample)
APPROACH:
1. Matrix multiply: y = x @ W.T (equivalent to (W @ x.T).T for batched data)
2. Add bias if it exists
3. Return result as new Tensor
EXAMPLE:
>>> layer = Linear(3, 2)
>>> x = Tensor([[1, 2, 3], [4, 5, 6]]) # 2 samples, 3 features
>>> y = layer.forward(x)
>>> print(y.shape)
(2, 2) # 2 samples, 2 outputs
HINTS:
- Use tensor.matmul() for matrix multiplication
- Handle bias=None case
- Broadcasting automatically handles bias addition
"""
### BEGIN SOLUTION
# Linear transformation: y = (W @ x.T).T = x @ W.T
# Weight is (out_features, in_features), so we transpose for matmul
output = x.matmul(self.weight.transpose())
# Add bias if present
if self.bias is not None:
output = output + self.bias
return output
### END SOLUTION
def parameters(self):
"""
Return list of trainable parameters.
TODO: Return all tensors that need gradients
APPROACH:
1. Start with weight (always present)
2. Add bias if it exists
3. Return as list for optimizer
EXAMPLE:
>>> layer = Linear(10, 5)
>>> params = layer.parameters()
>>> len(params)
2 # [weight, bias]
>>> layer_no_bias = Linear(10, 5, bias=False)
>>> len(layer_no_bias.parameters())
1 # [weight only]
HINTS:
- Create list starting with self.weight
- Check if self.bias is not None before appending
- Return the complete list
"""
### BEGIN SOLUTION
params = [self.weight]
if self.bias is not None:
params.append(self.bias)
return params
### END SOLUTION
def __repr__(self):
"""String representation for debugging."""
bias_str = f", bias={self.bias is not None}"
return f"Linear(in_features={self.in_features}, out_features={self.out_features}{bias_str})"
# %% [markdown]
"""
### πŸ”¬ Unit Test: Linear Layer
This test validates our Linear layer implementation works correctly.
**What we're testing**: Weight initialization, forward pass, parameter management
**Why it matters**: Foundation for all neural network architectures
**Expected**: Proper shapes, Xavier scaling, parameter counting
"""
# %% nbgrader={"grade": true, "grade_id": "test-linear", "locked": true, "points": 15}
def test_unit_linear_layer():
"""πŸ”¬ Test Linear layer implementation."""
print("πŸ”¬ Unit Test: Linear Layer...")
# Test layer creation
layer = Linear(784, 256)
assert layer.in_features == 784
assert layer.out_features == 256
assert layer.weight.shape == (784, 256)
assert layer.bias.shape == (256,)
# Test Xavier initialization (weights should be reasonably scaled)
weight_std = np.std(layer.weight.data)
expected_std = np.sqrt(XAVIER_SCALE_FACTOR / 784)
assert 0.5 * expected_std < weight_std < 2.0 * expected_std, f"Weight std {weight_std} not close to Xavier {expected_std}"
# Test bias initialization (should be zeros)
assert np.allclose(layer.bias.data, 0), "Bias should be initialized to zeros"
# Test forward pass
x = Tensor(np.random.randn(32, 784)) # Batch of 32 samples
y = layer.forward(x)
assert y.shape == (32, 256), f"Expected shape (32, 256), got {y.shape}"
# Test no bias option
layer_no_bias = Linear(10, 5, bias=False)
assert layer_no_bias.bias is None
params = layer_no_bias.parameters()
assert len(params) == 1 # Only weight, no bias
# Test parameters method
params = layer.parameters()
assert len(params) == 2 # Weight and bias
assert params[0] is layer.weight
assert params[1] is layer.bias
print("βœ… Linear layer works correctly!")
if __name__ == "__main__":
test_unit_linear_layer()
# %% [markdown]
"""
### πŸ”¬ Edge Case Tests: Linear Layer
Additional tests for edge cases and error handling.
"""
# %% nbgrader={"grade": true, "grade_id": "test-linear-edge-cases", "locked": true, "points": 5}
def test_edge_cases_linear():
"""πŸ”¬ Test Linear layer edge cases."""
print("πŸ”¬ Edge Case Tests: Linear Layer...")
layer = Linear(10, 5)
# Test single sample (should handle 2D input)
x_2d = Tensor(np.random.randn(1, 10))
y = layer.forward(x_2d)
assert y.shape == (1, 5), "Should handle single sample"
# Test zero batch size (edge case)
x_empty = Tensor(np.random.randn(0, 10))
y_empty = layer.forward(x_empty)
assert y_empty.shape == (0, 5), "Should handle empty batch"
# Test numerical stability with large weights
layer_large = Linear(10, 5)
layer_large.weight.data = np.ones((10, 5)) * 100 # Large but not extreme
x = Tensor(np.ones((1, 10)))
y = layer_large.forward(x)
assert not np.any(np.isnan(y.data)), "Should not produce NaN with large weights"
assert not np.any(np.isinf(y.data)), "Should not produce Inf with large weights"
# Test with no bias
layer_no_bias = Linear(10, 5, bias=False)
x = Tensor(np.random.randn(4, 10))
y = layer_no_bias.forward(x)
assert y.shape == (4, 5), "Should work without bias"
print("βœ… Edge cases handled correctly!")
if __name__ == "__main__":
test_edge_cases_linear()
# %% [markdown]
"""
### πŸ”¬ Parameter Collection Tests: Linear Layer
Tests to ensure Linear layer parameters can be collected for optimization.
"""
# %% nbgrader={"grade": true, "grade_id": "test-linear-params", "locked": true, "points": 5}
def test_parameter_collection_linear():
"""πŸ”¬ Test Linear layer parameter collection."""
print("πŸ”¬ Parameter Collection Test: Linear Layer...")
layer = Linear(10, 5)
# Verify parameter collection works
params = layer.parameters()
assert len(params) == 2, "Should return 2 parameters (weight and bias)"
assert params[0].shape == (10, 5), "First param should be weight"
assert params[1].shape == (5,), "Second param should be bias"
# Test layer without bias
layer_no_bias = Linear(10, 5, bias=False)
params_no_bias = layer_no_bias.parameters()
assert len(params_no_bias) == 1, "Should return 1 parameter (weight only)"
print("βœ… Parameter collection works correctly!")
if __name__ == "__main__":
test_parameter_collection_linear()
# %% [markdown]
"""
### 🎲 Dropout Layer - Preventing Overfitting
Dropout is a regularization technique that randomly "turns off" neurons during training. This forces the network to not rely too heavily on any single neuron, making it more robust and generalizable.
### Why Dropout Matters
**The Problem**: Neural networks can memorize training data instead of learning generalizable patterns. This leads to poor performance on new, unseen data.
**The Solution**: Dropout randomly zeros out neurons, forcing the network to learn multiple independent ways to solve the problem.
### Dropout in Action
```
Training Mode (p=0.5 dropout):
Input: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
↓ Random mask with 50% survival rate
Mask: [1, 0, 1, 0, 1, 1, 0, 1 ]
↓ Apply mask and scale by 1/(1-p) = 2.0
Output: [2.0, 0.0, 6.0, 0.0, 10.0, 12.0, 0.0, 16.0]
Inference Mode (no dropout):
Input: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
↓ Pass through unchanged
Output: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
```
### Training vs Inference Behavior
```
Training Mode Inference Mode
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
Input Features β”‚ [Γ—] [ ] [Γ—] [Γ—] β”‚ β”‚ [Γ—] [Γ—] [Γ—] [Γ—] β”‚
β”‚ Active Dropped β”‚ β†’ β”‚ All Active β”‚
β”‚ Active Active β”‚ β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
↓ ↓
"Learn robustly" "Use all knowledge"
```
### Memory and Performance
```
Dropout Memory Usage:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Input Tensor: X MB β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Random Mask: X/4 MB β”‚ (boolean mask, 1 byte/element)
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Output Tensor: X MB β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Total: ~2.25X MB peak memory
Computational Overhead: Minimal (element-wise operations)
```
"""
# %% nbgrader={"grade": false, "grade_id": "dropout-layer", "solution": true}
#| export
class Dropout(Layer):
"""
Dropout layer for regularization.
During training: randomly zeros elements with probability p, scales survivors by 1/(1-p)
During inference: passes input through unchanged
This prevents overfitting by forcing the network to not rely on specific neurons.
"""
def __init__(self, p=0.5):
"""
Initialize dropout layer.
TODO: Store dropout probability and validate range
APPROACH:
1. Validate p is between 0.0 and 1.0 (inclusive)
2. Raise ValueError if out of range
3. Store p as instance attribute
Args:
p: Probability of zeroing each element (0.0 = no dropout, 1.0 = zero everything)
EXAMPLE:
>>> dropout = Dropout(0.5) # Zero 50% of elements during training
>>> dropout.p
0.5
HINTS:
- Use DROPOUT_MIN_PROB and DROPOUT_MAX_PROB constants for validation
- Check: DROPOUT_MIN_PROB <= p <= DROPOUT_MAX_PROB
- Raise descriptive ValueError if invalid
"""
### BEGIN SOLUTION
if not DROPOUT_MIN_PROB <= p <= DROPOUT_MAX_PROB:
raise ValueError(f"Dropout probability must be between {DROPOUT_MIN_PROB} and {DROPOUT_MAX_PROB}, got {p}")
self.p = p
### END SOLUTION
def forward(self, x, training=True):
"""
Forward pass through dropout layer.
During training: randomly zeros elements with probability p, scales survivors by 1/(1-p)
During inference: passes input through unchanged
This prevents overfitting by forcing the network to not rely on specific neurons.
TODO: Implement dropout forward pass
APPROACH:
1. If training=False or p=0, return input unchanged
2. If p=1, return zeros
3. Otherwise: create random mask, apply it, scale by 1/(1-p)
EXAMPLE:
>>> dropout = Dropout(0.5)
>>> x = Tensor([1, 2, 3, 4])
>>> y_train = dropout.forward(x, training=True) # Some elements zeroed
>>> y_eval = dropout.forward(x, training=False) # All elements preserved
HINTS:
- Use np.random.random() < keep_prob for mask
- Scale by 1/(1-p) to maintain expected value
- training=False should return input unchanged
"""
### BEGIN SOLUTION
if not training or self.p == DROPOUT_MIN_PROB:
# During inference or no dropout, pass through unchanged
return x
if self.p == DROPOUT_MAX_PROB:
# Drop everything
return Tensor(np.zeros_like(x.data))
# During training, apply dropout
keep_prob = 1.0 - self.p
# Create random mask: True where we keep elements
mask = np.random.random(x.data.shape) < keep_prob
# Apply mask and scale
mask_tensor = Tensor(mask.astype(np.float32))
scale = Tensor(np.array(1.0 / keep_prob))
# Use Tensor operations: x * mask * scale
output = x * mask_tensor * scale
return output
### END SOLUTION
def __call__(self, x, training=True):
"""Allows the layer to be called like a function."""
return self.forward(x, training)
def parameters(self):
"""Dropout has no parameters."""
return []
def __repr__(self):
return f"Dropout(p={self.p})"
# %% [markdown]
"""
## πŸ—οΈ Sequential - Layer Container for Composition
`Sequential` chains layers together, calling forward() on each in order.
**Progressive Disclosure**: After learning to compose layers explicitly
(h = relu(linear1(x)); out = linear2(h)), you can use Sequential for convenience:
```python
model = Sequential(Linear(784, 128), ReLU(), Linear(128, 10))
out = model(x) # Chains all layers automatically
```
This is TinyTorch's equivalent of PyTorch's nn.Sequential - simpler but same idea.
"""
# %% nbgrader={"grade": false, "grade_id": "sequential", "solution": false}
#| export
class Sequential:
"""
Container that chains layers together sequentially.
After you understand explicit layer composition, Sequential provides
a convenient way to bundle layers together.
Example:
>>> model = Sequential(
... Linear(784, 128),
... ReLU(),
... Linear(128, 10)
... )
>>> output = model(input_tensor)
>>> params = model.parameters() # All parameters from all layers
"""
def __init__(self, *layers):
"""Initialize with layers to chain together."""
# Accept both Sequential(layer1, layer2) and Sequential([layer1, layer2])
if len(layers) == 1 and isinstance(layers[0], (list, tuple)):
self.layers = list(layers[0])
else:
self.layers = list(layers)
def forward(self, x):
"""Forward pass through all layers sequentially."""
for layer in self.layers:
# Call layer(x) instead of layer.forward(x) to ensure
# instrumentation hooks fire correctly
x = layer(x)
return x
def __call__(self, x):
"""Allow model to be called like a function."""
return self.forward(x)
def parameters(self):
"""Collect all parameters from all layers."""
params = []
for layer in self.layers:
params.extend(layer.parameters())
return params
def __repr__(self):
layer_reprs = ", ".join(repr(layer) for layer in self.layers)
return f"Sequential({layer_reprs})"
# %% [markdown]
"""
### πŸ”¬ Unit Test: Dropout Layer
This test validates our Dropout layer implementation works correctly.
**What we're testing**: Training vs inference behavior, probability scaling, randomness
**Why it matters**: Essential for preventing overfitting in neural networks
**Expected**: Correct masking during training, passthrough during inference
"""
# %% nbgrader={"grade": true, "grade_id": "test-dropout", "locked": true, "points": 10}
def test_unit_dropout_layer():
"""πŸ”¬ Test Dropout layer implementation."""
print("πŸ”¬ Unit Test: Dropout Layer...")
# Test dropout creation
dropout = Dropout(0.5)
assert dropout.p == 0.5
# Test inference mode (should pass through unchanged)
x = Tensor([1, 2, 3, 4])
y_inference = dropout.forward(x, training=False)
assert np.array_equal(x.data, y_inference.data), "Inference should pass through unchanged"
# Test training mode with zero dropout (should pass through unchanged)
dropout_zero = Dropout(0.0)
y_zero = dropout_zero.forward(x, training=True)
assert np.array_equal(x.data, y_zero.data), "Zero dropout should pass through unchanged"
# Test training mode with full dropout (should zero everything)
dropout_full = Dropout(1.0)
y_full = dropout_full.forward(x, training=True)
assert np.allclose(y_full.data, 0), "Full dropout should zero everything"
# Test training mode with partial dropout
# Note: This is probabilistic, so we test statistical properties
np.random.seed(42) # For reproducible test
x_large = Tensor(np.ones((1000,))) # Large tensor for statistical significance
y_train = dropout.forward(x_large, training=True)
# Count non-zero elements (approximately 50% should survive)
non_zero_count = np.count_nonzero(y_train.data)
expected = 500
# Use 3-sigma bounds: std = sqrt(n*p*(1-p)) = sqrt(1000*0.5*0.5) β‰ˆ 15.8
std_error = np.sqrt(1000 * 0.5 * 0.5)
lower_bound = expected - 3 * std_error # β‰ˆ 453
upper_bound = expected + 3 * std_error # β‰ˆ 547
assert lower_bound < non_zero_count < upper_bound, \
f"Expected {expected}Β±{3*std_error:.0f} survivors, got {non_zero_count}"
# Test scaling (surviving elements should be scaled by 1/(1-p) = 2.0)
surviving_values = y_train.data[y_train.data != 0]
expected_value = 2.0 # 1.0 / (1 - 0.5)
assert np.allclose(surviving_values, expected_value), f"Surviving values should be {expected_value}"
# Test no parameters
params = dropout.parameters()
assert len(params) == 0, "Dropout should have no parameters"
# Test invalid probability
try:
Dropout(-0.1)
assert False, "Should raise ValueError for negative probability"
except ValueError:
pass
try:
Dropout(1.1)
assert False, "Should raise ValueError for probability > 1"
except ValueError:
pass
print("βœ… Dropout layer works correctly!")
if __name__ == "__main__":
test_unit_dropout_layer()
# %% [markdown]
"""
## πŸ”§ Integration: Bringing It Together
Now that we've built both layer types, let's see how they work together to create a complete neural network architecture. We'll manually compose a realistic 3-layer MLP for MNIST digit classification.
### Network Architecture Visualization
```
MNIST Classification Network (3-Layer MLP):
Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 784 β”‚ β”‚ 256 β”‚ β”‚ 128 β”‚ β”‚ 10 β”‚
β”‚ Pixels │───▢│ Features │───▢│ Features │───▢│ Classes β”‚
β”‚ (28Γ—28 image) β”‚ β”‚ + ReLU β”‚ β”‚ + ReLU β”‚ β”‚ (0-9 digits) β”‚
β”‚ β”‚ β”‚ + Dropout β”‚ β”‚ + Dropout β”‚ β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
↓ ↓ ↓ ↓
"Raw pixels" "Edge detectors" "Shape detectors" "Digit classifier"
Data Flow:
[32, 784] β†’ Linear(784,256) β†’ ReLU β†’ Dropout(0.5) β†’ Linear(256,128) β†’ ReLU β†’ Dropout(0.3) β†’ Linear(128,10) β†’ [32, 10]
```
### Parameter Count Analysis
```
Parameter Breakdown (Manual Layer Composition):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ layer1 = Linear(784 β†’ 256) β”‚
β”‚ Weights: 784 Γ— 256 = 200,704 params β”‚
β”‚ Bias: 256 params β”‚
β”‚ Subtotal: 200,960 params β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ activation1 = ReLU(), dropout1 = Dropout(0.5) β”‚
β”‚ Parameters: 0 (no learnable weights) β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ layer2 = Linear(256 β†’ 128) β”‚
β”‚ Weights: 256 Γ— 128 = 32,768 params β”‚
β”‚ Bias: 128 params β”‚
β”‚ Subtotal: 32,896 params β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ activation2 = ReLU(), dropout2 = Dropout(0.3) β”‚
β”‚ Parameters: 0 (no learnable weights) β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ layer3 = Linear(128 β†’ 10) β”‚
β”‚ Weights: 128 Γ— 10 = 1,280 params β”‚
β”‚ Bias: 10 params β”‚
β”‚ Subtotal: 1,290 params β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
TOTAL: 235,146 parameters
Memory: ~940 KB (float32)
```
"""
# %% [markdown]
"""
## πŸ“Š Systems Analysis: Memory and Performance
Now let's analyze the systems characteristics of our layer implementations. Understanding memory usage and computational complexity helps us build efficient neural networks.
### Memory Analysis Overview
```
Layer Memory Components:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ PARAMETER MEMORY β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ Weights: Persistent, shared across batches β”‚
β”‚ β€’ Biases: Small but necessary for output shifting β”‚
β”‚ β€’ Total: Grows with network width and depth β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ ACTIVATION MEMORY β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ Input tensors: batch_size Γ— features Γ— 4 bytes β”‚
β”‚ β€’ Output tensors: batch_size Γ— features Γ— 4 bytes β”‚
β”‚ β€’ Intermediate results during forward pass β”‚
β”‚ β€’ Total: Grows with batch size and layer width β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ TEMPORARY MEMORY β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ Dropout masks: batch_size Γ— features Γ— 1 byte β”‚
β”‚ β€’ Computation buffers for matrix operations β”‚
β”‚ β€’ Total: Peak during forward/backward passes β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
### Computational Complexity Overview
```
Layer Operation Complexity:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Linear Layer Forward Pass: β”‚
β”‚ Matrix Multiply: O(batch Γ— in_features Γ— out_features) β”‚
β”‚ Bias Addition: O(batch Γ— out_features) β”‚
β”‚ Dominant: Matrix multiplication β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Multi-layer Forward Pass: β”‚
β”‚ Sum of all layer complexities β”‚
β”‚ Memory: Peak of all intermediate activations β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Dropout Forward Pass: β”‚
β”‚ Mask Generation: O(elements) β”‚
β”‚ Element-wise Multiply: O(elements) β”‚
β”‚ Overhead: Minimal compared to linear layers β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
"""
# %% nbgrader={"grade": false, "grade_id": "analyze-layer-memory", "solution": true}
def analyze_layer_memory():
"""πŸ“Š Analyze memory usage patterns in layer operations."""
print("πŸ“Š Analyzing Layer Memory Usage...")
# Test different layer sizes
layer_configs = [
(784, 256), # MNIST β†’ hidden
(256, 256), # Hidden β†’ hidden
(256, 10), # Hidden β†’ output
(2048, 2048), # Large hidden
]
print("\nLinear Layer Memory Analysis:")
print("Configuration β†’ Weight Memory β†’ Bias Memory β†’ Total Memory")
for in_feat, out_feat in layer_configs:
# Calculate memory usage
weight_memory = in_feat * out_feat * 4 # 4 bytes per float32
bias_memory = out_feat * 4
total_memory = weight_memory + bias_memory
print(f"({in_feat:4d}, {out_feat:4d}) β†’ {weight_memory/1024:7.1f} KB β†’ {bias_memory/1024:6.1f} KB β†’ {total_memory/1024:7.1f} KB")
# Analyze multi-layer memory scaling
print("\nπŸ’‘ Multi-layer Model Memory Scaling:")
hidden_sizes = [128, 256, 512, 1024, 2048]
for hidden_size in hidden_sizes:
# 3-layer MLP: 784 β†’ hidden β†’ hidden/2 β†’ 10
layer1_params = 784 * hidden_size + hidden_size
layer2_params = hidden_size * (hidden_size // 2) + (hidden_size // 2)
layer3_params = (hidden_size // 2) * 10 + 10
total_params = layer1_params + layer2_params + layer3_params
memory_mb = total_params * 4 / (1024 * 1024)
print(f"Hidden={hidden_size:4d}: {total_params:7,} params = {memory_mb:5.1f} MB")
# Analysis will be run in main block
# %% nbgrader={"grade": false, "grade_id": "analyze-layer-performance", "solution": true}
def analyze_layer_performance():
"""πŸ“Š Analyze computational complexity of layer operations."""
import time
print("πŸ“Š Analyzing Layer Computational Complexity...")
# Test forward pass FLOPs
batch_sizes = [1, 32, 128, 512]
layer = Linear(784, 256)
print("\nLinear Layer FLOPs Analysis:")
print("Batch Size β†’ Matrix Multiply FLOPs β†’ Bias Add FLOPs β†’ Total FLOPs")
for batch_size in batch_sizes:
# Matrix multiplication: (batch, in) @ (in, out) = batch * in * out FLOPs
matmul_flops = batch_size * 784 * 256
# Bias addition: batch * out FLOPs
bias_flops = batch_size * 256
total_flops = matmul_flops + bias_flops
print(f"{batch_size:10d} β†’ {matmul_flops:15,} β†’ {bias_flops:13,} β†’ {total_flops:11,}")
# Add timing measurements
print("\nLinear Layer Timing Analysis:")
print("Batch Size β†’ Time (ms) β†’ Throughput (samples/sec)")
for batch_size in batch_sizes:
x = Tensor(np.random.randn(batch_size, 784))
# Warm up
for _ in range(10):
_ = layer.forward(x)
# Time multiple iterations
iterations = 100
start = time.perf_counter()
for _ in range(iterations):
_ = layer.forward(x)
elapsed = time.perf_counter() - start
time_per_forward = (elapsed / iterations) * 1000 # Convert to ms
throughput = (batch_size * iterations) / elapsed
print(f"{batch_size:10d} β†’ {time_per_forward:8.3f} ms β†’ {throughput:12,.0f} samples/sec")
print("\nπŸ’‘ Key Insights:")
print("πŸš€ Linear layer complexity: O(batch_size Γ— in_features Γ— out_features)")
print("πŸš€ Memory grows linearly with batch size, quadratically with layer width")
print("πŸš€ Dropout adds minimal computational overhead (element-wise operations)")
print("πŸš€ Larger batches amortize overhead, improving throughput efficiency")
# Analysis will be run in main block
# %% [markdown]
"""
## πŸ§ͺ Module Integration Test
Final validation that everything works together correctly.
"""
# %% nbgrader={"grade": true, "grade_id": "module-integration", "locked": true, "points": 20}
def test_module():
"""πŸ§ͺ Module Test: Complete Integration
Comprehensive test of entire module functionality.
This final test runs before module summary to ensure:
- All unit tests pass
- Functions work together correctly
- Module is ready for integration with TinyTorch
"""
print("πŸ§ͺ RUNNING MODULE INTEGRATION TEST")
print("=" * 50)
# Run all unit tests
print("Running unit tests...")
test_unit_linear_layer()
test_edge_cases_linear()
test_parameter_collection_linear()
test_unit_dropout_layer()
print("\nRunning integration scenarios...")
# Test realistic neural network construction with manual composition
print("πŸ”¬ Integration Test: Multi-layer Network...")
# Use ReLU imported from package at module level
ReLU_class = ReLU
# Build individual layers for manual composition
layer1 = Linear(784, 128)
activation1 = ReLU_class()
dropout1 = Dropout(0.5)
layer2 = Linear(128, 64)
activation2 = ReLU_class()
dropout2 = Dropout(0.3)
layer3 = Linear(64, 10)
# Test end-to-end forward pass with manual composition
batch_size = 16
x = Tensor(np.random.randn(batch_size, 784))
# Manual forward pass
x = layer1.forward(x)
x = activation1.forward(x)
x = dropout1.forward(x)
x = layer2.forward(x)
x = activation2.forward(x)
x = dropout2.forward(x)
output = layer3.forward(x)
assert output.shape == (batch_size, 10), f"Expected output shape ({batch_size}, 10), got {output.shape}"
# Test parameter counting from individual layers
all_params = layer1.parameters() + layer2.parameters() + layer3.parameters()
expected_params = 6 # 3 weights + 3 biases from 3 Linear layers
assert len(all_params) == expected_params, f"Expected {expected_params} parameters, got {len(all_params)}"
# Test individual layer functionality
test_x = Tensor(np.random.randn(4, 784))
# Test dropout in training vs inference
dropout_test = Dropout(0.5)
train_output = dropout_test.forward(test_x, training=True)
infer_output = dropout_test.forward(test_x, training=False)
assert np.array_equal(test_x.data, infer_output.data), "Inference mode should pass through unchanged"
print("βœ… Multi-layer network integration works!")
print("\n" + "=" * 50)
print("πŸŽ‰ ALL TESTS PASSED! Module ready for export.")
print("Run: tito module complete 03_layers")
# %% [markdown]
"""
## πŸ€” ML Systems Questions: Reflect on Your Learning
Take a moment to reflect on what you've learned about layers and their systems implications. These questions help solidify your understanding and connect concepts to practical applications.
### Parameter Management and Memory
**Question 1: Parameter Scaling**
Consider three different network architectures for MNIST (28Γ—28 = 784 input features, 10 output classes):
Architecture A: 784 β†’ 128 β†’ 10
Architecture B: 784 β†’ 256 β†’ 10
Architecture C: 784 β†’ 512 β†’ 10
Without calculating exactly, which architecture has approximately 2Γ— the parameters of Architecture A? What does this tell you about how hidden layer size affects model capacity?
**Question 2: Memory Growth**
If a Linear(784, 256) layer uses ~800KB of memory for parameters, and you add it to a network that already has 5MB of parameters:
- What's the new total parameter memory?
- If you're running on a device with 100MB of available memory, roughly how many similar-sized layers could you add before running out?
- What happens to memory usage when you increase batch size from 32 to 128?
### Layer Composition Patterns
**Question 3: Dropout Behavior**
You have a Dropout layer with p=0.5 in your network:
- During training, why do we scale surviving values by 1/(1-p) = 2.0?
- During inference, dropout returns the input unchanged. Why don't we scale by 0.5?
- If you see wildly different training vs test accuracy, what might dropout probability be telling you?
**Question 4: Layer Ordering**
In a typical layer block, we compose: Linear β†’ Activation β†’ Dropout
What happens if you change the order to: Linear β†’ Dropout β†’ Activation?
- Does this affect what gets zeroed out?
- When would each ordering make sense?
- How does this composition pattern differ from having a "smart" Sequential container?
### Initialization and Training
**Question 5: Xavier Initialization**
We initialize weights with scale = sqrt(1/in_features).
- For Linear(1000, 10), how does this compare to Linear(10, 1000)?
- Why do we want smaller initial weights for layers with more inputs?
- What would happen if we initialized all weights to 0? To 1?
**Question 6: Computational Bottlenecks**
Looking at your timing analysis results:
- Which operation dominates: matrix multiplication or bias addition?
- How does batch size affect throughput (samples/sec)?
- If you need to process 10,000 images quickly, is batch_size=1 or batch_size=128 better? Why?
### Production Deployment
**Question 7: Manual Composition**
We deliberately built individual layers and composed them manually rather than using a Sequential container:
- What did you see explicitly that a Sequential would hide?
- How does manual composition help you understand data flow?
- In production code, when would you want explicit composition vs containers?
**Question 8: Memory Planning**
You're deploying a 3-layer network (784β†’256β†’128β†’10) to a mobile device:
- Parameters memory: ~235KB
- With batch_size=1, what other memory do you need for activations?
- If your device has 10MB free, can you increase batch size to 32? To 64?
- What's the trade-off between batch size and latency on mobile?
**Reflection:** These questions don't have single "correct" answers - they're designed to make you think about trade-offs, scaling behavior, and practical implications. The goal is to build intuition about how layers behave in real systems!
"""
# %% [markdown]
"""
## πŸ”§ Main Execution Block
This block runs when the module is executed directly, orchestrating all tests and analyses.
"""
# %% nbgrader={"grade": false, "grade_id": "main-execution", "solution": true}
if __name__ == "__main__":
print("=" * 70)
print("MODULE 03: LAYERS - COMPREHENSIVE VALIDATION")
print("=" * 70)
# Run module integration test
test_module()
print("\n" + "=" * 70)
print("SYSTEMS ANALYSIS")
print("=" * 70)
# Run analysis functions
analyze_layer_memory()
print("\n")
analyze_layer_performance()
print("\n" + "=" * 70)
print("βœ… MODULE 03 COMPLETE!")
print("=" * 70)
# %% [markdown]
"""
## ⭐ Aha Moment: Layers Transform Shapes
**What you built:** Linear layers that transform data from one dimension to another.
**Why it matters:** A Linear layer is the workhorse of neural networks. The transformation
from 784 features (a flattened 28Γ—28 image) to 10 classes (digits 0-9) is exactly what
happens in digit recognition. You just built the core component!
In the next module, you'll add loss functions that measure how wrong predictions are.
Combined with your layers, this creates the foundation for learning.
"""
# %%
def demo_layers():
"""🎯 See how layers transform shapes."""
print("🎯 AHA MOMENT: Layers Transform Shapes")
print("=" * 45)
# Create a layer that transforms 784 β†’ 10 (like MNIST)
layer = Linear(784, 10)
# Simulate a batch of 32 flattened images
batch = Tensor(np.random.randn(32, 784))
# Forward pass
output = layer(batch)
print(f"Input shape: {batch.shape} ← 32 images, 784 pixels each")
print(f"Output shape: {output.shape} ← 32 images, 10 classes each")
print(f"Parameters: {784 * 10 + 10:,} (weights + biases)")
print("\n✨ Your layer transforms images to class predictions!")
# %%
if __name__ == "__main__":
test_module()
print("\n")
demo_layers()
# %% [markdown]
"""
## πŸš€ MODULE SUMMARY: Layers
Congratulations! You've built the fundamental building blocks that make neural networks possible!
### Key Accomplishments
- Built Linear layers with proper Xavier initialization and parameter management
- Created Dropout layers for regularization with training/inference mode handling
- Demonstrated manual layer composition for building neural networks
- Analyzed memory scaling and computational complexity of layer operations
- All tests pass βœ… (validated by `test_module()`)
### Ready for Next Steps
Your layer implementation enables building complete neural networks! The Linear layer provides learnable transformations, manual composition chains them together, and Dropout prevents overfitting.
Export with: `tito module complete 03_layers`
**Next**: Module 04 will add loss functions (CrossEntropyLoss, MSELoss) that measure how wrong your model is - the foundation for learning!
"""