File size: 11,832 Bytes
0b51f7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97f599
0b51f7e
 
 
f97f599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b51f7e
 
f97f599
 
0b51f7e
 
 
 
 
 
f97f599
0b51f7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# =========================
# Cantilever Rectangular Beam — Point Load (Free End or at Position a)
# =========================

import math
import json
import gradio as gr
import pandas as pd

# ---- Optional LLM with safe fallback ----
_USE_LLM = True
try:
    from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
    MODEL_ID = "HuggingFaceTB/SmolLM2-135M-Instruct"
    _tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    _pipe = pipeline(
        task="text-generation",
        model=AutoModelForCausalLM.from_pretrained(MODEL_ID),
        tokenizer=_tokenizer,
    )
except Exception:
    _USE_LLM = False
    _tokenizer = None
    _pipe = None

SCOPE_MD = """
### Scope & Assumptions
- Problem: **Cantilever rectangular beam**, **point load** either at the **free end** or at **position a** from the fixed end.
- Outputs: Maximum bending stress (σ_max), yield FoS, free-end deflection (δ), deflection FoS vs. **L/180** (typical cantilever service limit).
- Method: Euler–Bernoulli beam theory (linear-elastic, small deflection). Shear deformation and local buckling not included.
- Section: Rectangle with **width b** (in-plane) and **height h** (bends about the strong axis).
- Units: SI (m, N, GPa, MPa). Results in MPa and mm.

### Valid ranges (hard checks)
- 0.05 < L ≤ 10 m
- 0 < P ≤ 1*10^6 N
- 1 ≤ E ≤ 400 GPa
- 10 ≤ Sy ≤ 3000 MPa
- 0.005 < b ≤ 2 m
- 0.005 < h ≤ 2 m
- For load at position a: 0 < a ≤ L

**Notes:** Service limit uses **L/180** for cantilevers (typical).
"""

# ---------- Validation & core ----------
def _validate_inputs(L_m, P_N, E_GPa, Sy_MPa, b_m, h_m):
    errs = []
    def in_range(name, val, lo, hi):
        if not (lo < val <= hi):
            errs.append(f"{name} must be in ({lo}, {hi}] (got {val}).")
    in_range("Beam length L [m]", L_m, 0.05, 10.0)
    in_range("Point load P [N]", P_N, 0.0, 1_000_000.0)
    in_range("Elastic modulus E [GPa]", E_GPa, 1.0, 400.0)
    in_range("Yield strength Sy [MPa]", Sy_MPa, 10.0, 3000.0)
    in_range("Section width b [m]", b_m, 0.005, 2.0)
    in_range("Section height h [m]", h_m, 0.005, 2.0)
    if errs:
        raise ValueError("\n".join(errs))

def rect_I(b, h):
    # Strong-axis bending: I = b*h^3/12
    return b * (h**3) / 12.0

def calc_cantilever_rect(L_m, P_N, E_GPa, Sy_MPa, b_m, h_m, mode, a_in):
    """
    Cantilever rectangular beam with point load at:
      - Free end  -> a = L
      - Position a -> 0 < a <= L
    """
    _validate_inputs(L_m, P_N, E_GPa, Sy_MPa, b_m, h_m)

    if mode == "Free end (a = L)":
        a = L_m
        mode_note = "Free end load (a = L)"
    else:
        a = float(a_in)
        if not (0.0 < a <= L_m):
            raise ValueError(f"a must satisfy 0 < a ≤ L (got a={a}, L={L_m}).")
        mode_note = f"Load at position a (a = {a:g} m)"

    E_Pa = E_GPa * 1e9
    Sy_Pa = Sy_MPa * 1e6

    I = rect_I(b_m, h_m)
    c = h_m / 2.0

    # Max moment at fixed end
    # M_max = P * a
    M = P_N * a

    # Max bending stress (outer fiber at fixed end)
    # sigma_max = M*c / I
    sigma_max_Pa = (M * c) / I
    sigma_max_MPa = sigma_max_Pa / 1e6

    # Free-end deflection for cantilever with a point load at position a:
    # δ(L) = P * a^2 * (3L - a) / (6 E I)
    delta_m = (P_N * (a**2) * (3.0 * L_m - a)) / (6.0 * E_Pa * I)
    delta_mm = delta_m * 1e3

    # Serviceability (typical cantilever): δ_allow = L / 180
    delta_allow_m = L_m / 180.0
    fos_deflection = (delta_allow_m / delta_m) if delta_m > 0 else math.inf
    deflection_ok = delta_m <= delta_allow_m

    utilization = sigma_max_Pa / Sy_Pa
    fos_yield = (1.0 / utilization) if utilization > 0 else math.inf
    passes_yield = sigma_max_Pa <= Sy_Pa

    overall_ok = bool(passes_yield and deflection_ok)

    structured = {
        "problem": "Cantilever rectangular beam with point load (free end or at position a)",
        "assumptions": [
            "Linear-elastic, small deflection (Euler–Bernoulli)",
            "No shear deformation or local buckling",
            "Rectangular section, strong-axis bending"
        ],
        "mode": mode_note,
        "inputs_SI": {
            "L_m": L_m, "P_N": P_N, "E_GPa": E_GPa, "Sy_MPa": Sy_MPa,
            "section": {"b_m": b_m, "h_m": h_m},
            "a_m": a
        },
        "section_properties": {"I_m4": I, "c_m": c},
        "formulas": {
            "I_rect": "I = b*h^3/12",
            "M_max": "M = P*a",
            "sigma_max": "sigma_max = M*c / I",
            "delta_tip": "delta(L) = P*a^2*(3L - a)/(6*E*I)",
            "service_limit": "delta_allow = L/180 (cantilever typical)"
        },
        "results": {
            "sigma_max_MPa": sigma_max_MPa,
            "FoS_yield": fos_yield,
            "delta_mm": delta_mm,
            "FoS_deflection": fos_deflection
        },
        "verdicts": {
            "strength_ok": passes_yield,
            "service_ok": deflection_ok,
            "overall_ok": overall_ok
        }
    }

    # ---- Show the math (explicit '*' multiplications) ----
    def _fmt(x, d=6):
        try:
            return f"{x:.{d}g}"
        except Exception:
            return str(x)

    steps_md = "\n".join([
        "## Show the math",
        f"Mode: {mode_note}",
        f"L = {_fmt(L_m)} m,  P = {_fmt(P_N)} N,  E = {_fmt(E_GPa)} GPa,  Sy = {_fmt(Sy_MPa)} MPa",
        f"b = {_fmt(b_m)} m,  h = {_fmt(h_m)} m,  a = {_fmt(a)} m",
        "",
        "I = b*h^3/12",
        f"  = {b_m} * {h_m}^3 / 12",
        f"  = {I:.6e} m^4",
        f"c = h/2 = {h_m} / 2 = {h_m/2:.4f} m",
        "",
        "M_max = P * a",
        f"  = {P_N} * {a} = {P_N*a:.6e} N·m",
        "sigma_max = M * c / I",
        f"  = ({P_N*a:.6e}) * ({h_m}/2) / ({I:.6e})",
        f"  = {sigma_max_MPa:.3f} MPa",
        "",
        "delta(L) = P * a^2 * (3*L - a) / (6*E*I)",
        f"  = {P_N} * {a}^2 * (3*{L_m} - {a}) / (6 * ({E_GPa} * 10^9) * {I:.6e})",
        f"  = {delta_mm:.3f} mm",
        f"delta_allow = L / 180 = {L_m} / 180 = {L_m/180.0:.6f} m = {L_m/180.0*1e3:.3f} mm",
        "",
        "FoS_yield = Sy / sigma_max",
        f"  = {Sy_MPa} / {sigma_max_MPa:.3f} = {fos_yield:.3f}",
        "FoS_deflection = delta_allow / delta",
        f"  = {L_m/180.0*1e3:.3f} / {delta_mm:.3f} = {fos_deflection:.3f}",
    ])

    return {
        "results": {
            "sigma_max_MPa": sigma_max_MPa,
            "safety_factor_yield": fos_yield,
            "delta_m": delta_m,
            "delta_mm": delta_mm,
            "fos_deflection": fos_deflection,
        },
        "verdict": {
            "passes_yield": bool(passes_yield),
            "passes_serviceability": bool(deflection_ok),
            "overall_ok": bool(overall_ok),
            "strength_message": "OK: stress < yield" if passes_yield else "Not OK: stress ≥ yield",
            "service_message": "OK: deflection < L/180" if deflection_ok else "Not OK: deflection ≥ L/180",
        },
        "structured_message": json.dumps(structured, indent=2),
        "steps_markdown": steps_md
    }

# ---------- LLM helper (safe) ----------
def _format_chat(system_prompt: str, user_prompt: str) -> str:
    if _tokenizer is None:
        return system_prompt + "\n\n" + user_prompt
    messages = [{"role":"system","content":system_prompt},{"role":"user","content":user_prompt}]
    return _tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

def llm_explain(structured_message: str) -> str:
    # Deterministic, number-rich fallback
    if (not _USE_LLM) or (_tokenizer is None) or (_pipe is None):
        try:
            d = json.loads(structured_message)
            r = d["results"]
            v = d["verdicts"]
            inp = d["inputs_SI"]
            L = float(inp["L_m"])
            Sy = float(inp["Sy_MPa"])
            sigma = float(r["sigma_max_MPa"])
            delta = float(r["delta_mm"])
            delta_allow = L/180.0*1e3  # mm

            s_msg = "OK" if v["strength_ok"] else "NOT OK"
            d_msg = "OK" if v["service_ok"] else "NOT OK"
            return (
                f"Strength {s_msg} (σ_max={sigma:.2f} MPa vs Sy={Sy:.0f} MPa); "
                f"deflection {d_msg} (δ={delta:.2f} mm vs L/180={delta_allow:.2f} mm)."
            )
        except Exception:
            return "Quick take: strength and deflection (L/180) checks computed; see the table and math."

    # LLM path (only if model actually loads)
    system_prompt = (
        "You explain engineering to a smart 5-year-old using a quick food analogy. "
        "You ALWAYS respond in exactly ONE friendly sentence."
    )
    user_prompt = (
        "Here are the inputs, formulas, and results for a cantilever beam calculation.\n"
        "Summarize whether the beam is OK in strength and deflection, with one short food analogy.\n\n"
        + structured_message
    )
    formatted = _format_chat(system_prompt, user_prompt)
    out = _pipe(formatted, max_new_tokens=120, do_sample=True, temperature=0.4, return_full_text=False)
    return out[0]["generated_text"].split("\n")[0]

# ---------- Gradio runner ----------
def run_once(L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m, mode, a_m):
    try:
        P_N = float(P_kN) * 1e3
        d = calc_cantilever_rect(
            float(L_m), P_N, float(E_GPa), float(Sy_MPa), float(b_m), float(h_m),
            mode, float(a_m) if a_m is not None else float(L_m)
        )
        df = pd.DataFrame([{
            "σ_max [MPa]": round(d["results"]["sigma_max_MPa"], 3),
            "FoS (yield) [-]": round(d["results"]["safety_factor_yield"], 3),
            "δ [mm]": round(d["results"]["delta_mm"], 3),
            "FoS (deflection) [-]": round(d["results"]["fos_deflection"], 3),
            "Strength Verdict": d["verdict"]["strength_message"],
            "Deflection Verdict": d["verdict"]["service_message"],
        }])
        narrative = llm_explain(d["structured_message"])
        return df, narrative, d["steps_markdown"], ""
    except Exception as e:
        return pd.DataFrame(), "", "", f"Input error:\n{e}"

with gr.Blocks(title="Cantilever Rectangular Beam — Point Load") as demo:
    gr.Markdown("# Cantilever Rectangular Beam — Point Load (Free End or at Position a)")
    gr.Markdown(SCOPE_MD)

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Load & Material")
            L_m   = gr.Number(value=2.0,  label="Beam length L [m]")
            P_kN  = gr.Number(value=5.0,  label="Point load P [kN]")
            E_GPa = gr.Number(value=200., label="Elastic modulus E [GPa]")
            Sy_MPa= gr.Number(value=250., label="Yield strength Sy [MPa]")
        with gr.Column():
            gr.Markdown("### Rectangular Section")
            b_m   = gr.Number(value=0.05, label="Width b [m]")
            h_m   = gr.Number(value=0.10, label="Height h [m]")

    # Load position controls
    mode = gr.Radio(
        ["Free end (a = L)", "At position a"],
        value="Free end (a = L)",
        label="Load position mode"
    )
    a_m = gr.Number(value=2.0, label="a [m] (distance from fixed end)", visible=False)

    def _toggle_a(selected):
        return gr.update(visible=(selected == "At position a"))

    mode.change(_toggle_a, inputs=[mode], outputs=[a_m])

    run_btn = gr.Button("Compute")

    gr.Markdown("### Results")
    results_df = gr.Dataframe(label="Numerical results", interactive=False)

    gr.Markdown("### Explain the results")
    explain_md = gr.Markdown()

    gr.Markdown("### Show the math")
    steps_md = gr.Markdown()

    err_box = gr.Textbox(label="Errors", interactive=False)

    run_btn.click(
        fn=run_once,
        inputs=[L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m, mode, a_m],
        outputs=[results_df, explain_md, steps_md, err_box]
    )

if __name__ == "__main__":
    demo.launch(debug=False)