Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,6 +26,54 @@ def validate_inputs(A, B, C, AB, AC, BC, ABC, U):
|
|
| 26 |
|
| 27 |
return errors
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def suggest_intersections(A, B, C, AB, AC, BC, ABC, U):
|
| 30 |
union_ABC = A + B + C - AB - AC - BC + ABC
|
| 31 |
|
|
@@ -39,96 +87,56 @@ def suggest_intersections(A, B, C, AB, AC, BC, ABC, U):
|
|
| 39 |
"Máximo valor sugerido para A ∩ B": max_AB,
|
| 40 |
"Máximo valor sugerido para A ∩ C": max_AC,
|
| 41 |
"Máximo valor sugerido para B ∩ C": max_BC,
|
| 42 |
-
"Máximo valor sugerido para A ∩ B ∩ C": max_ABC
|
| 43 |
}
|
|
|
|
| 44 |
return suggestions
|
| 45 |
|
| 46 |
-
def
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
"P(A ∩ C)": 0,
|
| 55 |
-
"P(B ∩ C)": 0,
|
| 56 |
-
"P(A ∩ B ∩ C)": 0,
|
| 57 |
-
}
|
| 58 |
-
|
| 59 |
-
P_A = A / total
|
| 60 |
-
P_B = B / total
|
| 61 |
-
P_C = C / total
|
| 62 |
-
P_AB = AB / total
|
| 63 |
-
P_AC = AC / total
|
| 64 |
-
P_BC = BC / total
|
| 65 |
-
P_ABC = ABC / total
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
formatted_probs = {
|
| 72 |
-
"P(A)": f"{P_A:.2%} ({A}/{total})",
|
| 73 |
-
"P(B)": f"{P_B:.2%} ({B}/{total})",
|
| 74 |
-
"P(C)": f"{P_C:.2%} ({C}/{total})",
|
| 75 |
-
"P(A ∩ B)": f"{P_AB:.2%} ({AB}/{total})",
|
| 76 |
-
"P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})",
|
| 77 |
-
"P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})",
|
| 78 |
-
"P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})",
|
| 79 |
-
"P(A | B)": f"{PA_given_B:.2%} (P(A ∩ B) / P(B)) = ({P_AB:.4f} / {P_B:.4f})",
|
| 80 |
-
"P(A | C)": f"{PA_given_C:.2%} (P(A ∩ C) / P(C)) = ({P_AC:.4f} / {P_C:.4f})",
|
| 81 |
-
"P(B | C)": f"{PB_given_C:.2%} (P(B ∩ C) / P(C)) = ({P_BC:.4f} / {P_C:.4f})",
|
| 82 |
-
"U (Universal Set)": total,
|
| 83 |
-
"Complemento de A U B U C": U - (A + B + C - AB - AC - BC + ABC)
|
| 84 |
-
}
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
plt.figure(figsize=(10,10))
|
| 92 |
-
venn = venn3(subsets=(max(0, A - AB - AC + ABC), max(0,B - AB - BC + ABC), max(0,AB - ABC), max(0,C- AC - BC + ABC), max(AC - ABC, 0), max(BC - ABC,0), ABC), set_labels=('A', 'B', 'C'))
|
| 93 |
-
img = BytesIO()
|
| 94 |
-
plt.savefig(img, format='png')
|
| 95 |
-
img.seek(0)
|
| 96 |
-
image = Image.open(img)
|
| 97 |
-
return image
|
| 98 |
-
|
| 99 |
-
def main(U, A, B, C, AB, AC, BC, ABC):
|
| 100 |
-
errors = validate_inputs(A, B, C, AB, AC, BC, ABC, U)
|
| 101 |
-
if errors:
|
| 102 |
-
return {"Errores de validación": errors}, None, None
|
| 103 |
-
|
| 104 |
suggestions = suggest_intersections(A, B, C, AB, AC, BC, ABC, U)
|
| 105 |
-
probabilities_df = calculate_probabilities(A, B, C, AB, AC, BC, ABC, U)
|
| 106 |
-
venn_image = draw_venn(A, B, C, AB, AC, BC, ABC)
|
| 107 |
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
fn=main,
|
| 113 |
inputs=[
|
| 114 |
-
gr.Number(label="
|
| 115 |
-
gr.Number(label="
|
| 116 |
-
gr.Number(label="
|
| 117 |
-
gr.Number(label="
|
| 118 |
-
gr.Number(label="A ∩
|
| 119 |
-
gr.Number(label="
|
| 120 |
-
gr.Number(label="B ∩ C"),
|
| 121 |
-
gr.Number(label="
|
| 122 |
-
],
|
| 123 |
outputs=[
|
| 124 |
-
gr.
|
| 125 |
-
gr.
|
| 126 |
-
gr.
|
| 127 |
],
|
| 128 |
-
title="
|
| 129 |
-
description="Calcula las probabilidades, intersecciones sugeridas y genera un diagrama de Venn.",
|
| 130 |
-
live=True
|
| 131 |
)
|
| 132 |
|
| 133 |
if __name__ == "__main__":
|
| 134 |
-
|
|
|
|
| 26 |
|
| 27 |
return errors
|
| 28 |
|
| 29 |
+
def calculate_probabilities(A, B, C, AB, AC, BC, ABC, U):
|
| 30 |
+
# Probabilidades individuales
|
| 31 |
+
P_A = A / U
|
| 32 |
+
P_B = B / U
|
| 33 |
+
P_C = C / U
|
| 34 |
+
|
| 35 |
+
# Probabilidades condicionales
|
| 36 |
+
P_A_given_B = AB / B
|
| 37 |
+
P_B_given_A = AB / A
|
| 38 |
+
P_A_given_C = AC / C
|
| 39 |
+
P_C_given_A = AC / A
|
| 40 |
+
P_B_given_C = BC / C
|
| 41 |
+
P_C_given_B = BC / B
|
| 42 |
+
|
| 43 |
+
# Probabilidad total para A, B y C
|
| 44 |
+
P_A_total = P_B * P_A_given_B + P_C * P_A_given_C - P_B_given_C * P_C_given_B * P_A_given_B * P_A_given_C
|
| 45 |
+
P_B_total = P_A * P_B_given_A + P_C * P_B_given_C - P_A_given_C * P_C_given_A * P_B_given_A * P_B_given_C
|
| 46 |
+
P_C_total = P_A * P_C_given_A + P_B * P_C_given_B - P_A_given_B * P_B_given_A * P_C_given_A * P_C_given_B
|
| 47 |
+
|
| 48 |
+
# Teorema de Bayes (probabilidad de A dado B, B dado A, etc.)
|
| 49 |
+
P_A_given_B_bayes = (P_B_given_A * P_A) / P_B
|
| 50 |
+
P_B_given_A_bayes = (P_A_given_B * P_B) / P_A
|
| 51 |
+
P_A_given_C_bayes = (P_C_given_A * P_A) / P_C
|
| 52 |
+
P_C_given_A_bayes = (P_A_given_C * P_C) / P_A
|
| 53 |
+
P_B_given_C_bayes = (P_C_given_B * P_B) / P_C
|
| 54 |
+
P_C_given_B_bayes = (P_B_given_C * P_C) / P_B
|
| 55 |
+
|
| 56 |
+
return {
|
| 57 |
+
"P(A)": P_A,
|
| 58 |
+
"P(B)": P_B,
|
| 59 |
+
"P(C)": P_C,
|
| 60 |
+
"P(A|B)": P_A_given_B,
|
| 61 |
+
"P(B|A)": P_B_given_A,
|
| 62 |
+
"P(A|C)": P_A_given_C,
|
| 63 |
+
"P(C|A)": P_C_given_A,
|
| 64 |
+
"P(B|C)": P_B_given_C,
|
| 65 |
+
"P(C|B)": P_C_given_B,
|
| 66 |
+
"P(A) total": P_A_total,
|
| 67 |
+
"P(B) total": P_B_total,
|
| 68 |
+
"P(C) total": P_C_total,
|
| 69 |
+
"P(A|B) Bayes": P_A_given_B_bayes,
|
| 70 |
+
"P(B|A) Bayes": P_B_given_A_bayes,
|
| 71 |
+
"P(A|C) Bayes": P_A_given_C_bayes,
|
| 72 |
+
"P(C|A) Bayes": P_C_given_A_bayes,
|
| 73 |
+
"P(B|C) Bayes": P_B_given_C_bayes,
|
| 74 |
+
"P(C|B) Bayes": P_C_given_B_bayes
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
def suggest_intersections(A, B, C, AB, AC, BC, ABC, U):
|
| 78 |
union_ABC = A + B + C - AB - AC - BC + ABC
|
| 79 |
|
|
|
|
| 87 |
"Máximo valor sugerido para A ∩ B": max_AB,
|
| 88 |
"Máximo valor sugerido para A ∩ C": max_AC,
|
| 89 |
"Máximo valor sugerido para B ∩ C": max_BC,
|
| 90 |
+
"Máximo valor sugerido para A ∩ B ∩ C": max_ABC
|
| 91 |
}
|
| 92 |
+
|
| 93 |
return suggestions
|
| 94 |
|
| 95 |
+
def plot_venn(A, B, C, AB, AC, BC, ABC):
|
| 96 |
+
plt.figure(figsize=(8,8))
|
| 97 |
+
venn = venn3(subsets = (A, B, AB, C, AC, BC, ABC), set_labels=('A', 'B', 'C'))
|
| 98 |
+
buf = BytesIO()
|
| 99 |
+
plt.savefig(buf, format='png')
|
| 100 |
+
plt.close()
|
| 101 |
+
buf.seek(0)
|
| 102 |
+
return Image.open(buf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
def main(A, B, C, AB, AC, BC, ABC, U):
|
| 105 |
+
# Mostrar gráfico de Venn
|
| 106 |
+
venn_img = plot_venn(A, B, C, AB, AC, BC, ABC)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# Validar entradas
|
| 109 |
+
validation_errors = validate_inputs(A, B, C, AB, AC, BC, ABC, U)
|
| 110 |
+
if validation_errors:
|
| 111 |
+
return None, None, validation_errors
|
| 112 |
|
| 113 |
+
# Sugerir intersecciones
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
suggestions = suggest_intersections(A, B, C, AB, AC, BC, ABC, U)
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# Calcular probabilidades
|
| 117 |
+
probabilities = calculate_probabilities(A, B, C, AB, AC, BC, ABC, U)
|
| 118 |
+
|
| 119 |
+
return venn_img, suggestions, probabilities
|
| 120 |
|
| 121 |
+
iface = gr.Interface(
|
| 122 |
+
fn=main,
|
|
|
|
| 123 |
inputs=[
|
| 124 |
+
gr.Number(label="A"),
|
| 125 |
+
gr.Number(label="B"),
|
| 126 |
+
gr.Number(label="C"),
|
| 127 |
+
gr.Number(label="A ∩ B"),
|
| 128 |
+
gr.Number(label="A ∩ C"),
|
| 129 |
+
gr.Number(label="B ∩ C"),
|
| 130 |
+
gr.Number(label="A ∩ B ∩ C"),
|
| 131 |
+
gr.Number(label="U")
|
| 132 |
+
],
|
| 133 |
outputs=[
|
| 134 |
+
gr.Image(type="pil"),
|
| 135 |
+
gr.JSON(label="Sugerencias"),
|
| 136 |
+
gr.JSON(label="Probabilidades")
|
| 137 |
],
|
| 138 |
+
title="Cálculo de Probabilidades y Teorema de Bayes con Diagramas de Venn"
|
|
|
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
if __name__ == "__main__":
|
| 142 |
+
iface.launch()
|