File size: 5,666 Bytes
f12661e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbe5a4
f12661e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import sys
import os
import numpy as np
import matplotlib.pyplot as plt
from math import sin,cos,tan
from mpl_toolkits.mplot3d import Axes3D

class FlightEnvironment:
    def __init__(self,obs_num):
        self.env_width = 20.0
        self.env_length = 20.0
        self.env_height = 5
        self.space_size = (self.env_width,self.env_length,self.env_height)
        self._obs_num = obs_num

        self.cylinders = self.generate_random_cylinders(self.space_size,self._obs_num,0.1,0.3,5,5)




    def generate_random_cylinders(self,space_size, N,
                              min_radius, max_radius,
                              min_height, max_height,
                              max_tries=100000):

        X, Y, Z = space_size
        cylinders = []
        tries = 0

        while len(cylinders) < N and tries < max_tries:
            tries += 1

            r = np.random.uniform(min_radius, max_radius)
            h = np.random.uniform(min_height, min(max_height, Z))

            x = np.random.uniform(r, X - r)
            y = np.random.uniform(r, Y - r)

            candidate = np.array([x, y, h, r])

            no_overlapping = True
            for c in cylinders:
                dx = x - c[0]
                dy = y - c[1]
                dist = np.hypot(dx, dy)
                if dist < (r + c[3]):  
                    no_overlapping = False
                    break

            if no_overlapping:
                cylinders.append(candidate)

        if len(cylinders) < N:
            raise RuntimeError("Unable to generate a sufficient number of non-overlapping cylinders with the given parameters. Please reduce N or decrease the radius range.")

        return np.vstack(cylinders)
    

    def is_outside(self,point):
        """
        Check whether a 3D point lies outside the environment boundary.

        Parameters:
            point : tuple or list (x, y, z)
                The coordinates of the point to be checked.

        Returns:
            bool
                True  -> the point is outside the environment limits  
                False -> the point is within the valid environment region
        """

        x,y,z = point
        if (0 <= x <= self.env_width and
                0 <= y <= self.env_length and
                0 <= z <= self.env_height):
            outside_env = False
        else:
            outside_env = True
        return outside_env
    


    def is_collide(self, point, epsilon=0.2):
            """
            Check whether a point in 3D space collides with a given set of cylinders (including a safety margin).

            Parameters:
                point: A numpy array or tuple of (x, y, z)
                cylinders: An N×4 numpy array, each row is [cx, cy, h, r]
                        where cx, cy are the cylinder center coordinates in XY,
                        h is the height, and r is the radius
                epsilon: Safety margin; if the point is closer than (r + epsilon),
                        it is also considered a collision

            Returns:
                True  -> Collision (or too close)
                False -> Safe
            """
            cylinders = self.cylinders
            px, py, pz = point

            for cx, cy, h, r in cylinders:
                if not (0 <= pz <= h):
                    continue 
                dist_xy = np.sqrt((px - cx)**2 + (py - cy)**2)
                if dist_xy <= (r + epsilon):
                    return True   
            
            return False
    
    def plot_cylinders(self,path = None):
        """
        cylinders: N×4 array, [cx, cy, h, r]
        """

        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        cylinders = self.cylinders
        space_size = self.space_size



        Xmax, Ymax, Zmax = space_size
        for cx, cy, h, r in cylinders:
            z = np.linspace(0, h, 30)
            theta = np.linspace(0, 2 * np.pi, 30)
            theta, z = np.meshgrid(theta, z)

            x = cx + r * np.cos(theta)
            y = cy + r * np.sin(theta)

            ax.plot_surface(x, y, z, color='skyblue', alpha=0.8)
            theta2 = np.linspace(0, 2*np.pi, 30)
            x_top = cx + r * np.cos(theta2)
            y_top = cy + r * np.sin(theta2)
            z_top = np.ones_like(theta2) * h
            ax.plot_trisurf(x_top, y_top, z_top, color='steelblue', alpha=0.8)

        ax.set_xlim(0, self.env_width)
        ax.set_ylim(0, self.env_length)
        ax.set_zlim(0, self.env_height)


        if path is not None:
            path = np.array(path)
            xs, ys, zs = path[:, 0], path[:, 1], path[:, 2]
            ax.plot(xs, ys, zs, linewidth=2)     
            ax.scatter(xs[0], ys[0], zs[0], s=40) 
            ax.scatter(xs[-1], ys[-1], zs[-1], s=40) 
        self.set_axes_equal(ax)
        plt.show(block=False)


    def set_axes_equal(self,ax):
        """Make axes of 3D plot have equal scale.
        Compatible with Matplotlib ≥ 1.0.0
        """
        x_limits = ax.get_xlim3d()
        y_limits = ax.get_ylim3d()
        z_limits = ax.get_zlim3d()

        x_range = abs(x_limits[1] - x_limits[0])
        y_range = abs(y_limits[1] - y_limits[0])
        z_range = abs(z_limits[1] - z_limits[0])

        max_range = max([x_range, y_range, z_range]) / 2.0

        mid_x = (x_limits[0] + x_limits[1]) * 0.5
        mid_y = (y_limits[0] + y_limits[1]) * 0.5
        mid_z = (z_limits[0] + z_limits[1]) * 0.5

        ax.set_xlim3d([mid_x - max_range, mid_x + max_range])
        ax.set_ylim3d([mid_y - max_range, mid_y + max_range])
        ax.set_zlim3d([mid_z - max_range, mid_z + max_range])