File size: 6,118 Bytes
f9b644c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

print("Where is the Distribution Concentrating? Near Maximum or Middle?")
print("="*70)
print()

# Summary data from our analyses
data = {
    4: {
        "alpha": 1.077,
        "beta": 0.974,
        "mean_ratio": 0.537,
        "max_vol": 1.01494,
        "name": "tetrahedron"
    },
    5: {
        "alpha": 4.77,
        "beta": 1.80,
        "mean_ratio": 0.658,
        "max_vol": 2.02988,
        "name": "triangular bipyramid"
    },
    6: {
        "alpha": 6.33,
        "beta": 3.89,
        "mean_ratio": 0.620,
        "max_vol": 3.6808,
        "name": "octahedron-like"
    }
}

# For Beta(α, β), the mode is at (α-1)/(α+β-2) for α,β > 1
# The mean is at α/(α+β)

print("Analysis of concentration location:")
print("-"*70)
print("Vertices | Mode/Max | Mean/Max | Mode Position | Skewness")
print("-"*70)

fig, axes = plt.subplots(2, 2, figsize=(12, 10))

# Plot 1: Beta distributions showing mode vs mean
ax = axes[0, 0]
x = np.linspace(0, 1, 1000)
colors = ['red', 'green', 'blue']

for i, (n_verts, params) in enumerate(data.items()):
    alpha, beta_param = params["alpha"], params["beta"]
    
    # Calculate mode and mean positions
    if alpha > 1 and beta_param > 1:
        mode = (alpha - 1) / (alpha + beta_param - 2)
    else:
        mode = 0 if alpha < 1 else 1
    
    mean = alpha / (alpha + beta_param)
    
    # Skewness
    skewness = 2 * (beta_param - alpha) * np.sqrt(alpha + beta_param + 1)
    skewness /= (alpha + beta_param + 2) * np.sqrt(alpha * beta_param)
    
    print(f"{n_verts:8d} | {mode:8.3f} | {params['mean_ratio']:8.3f} | "
          f"{'Right' if mode > mean else 'Left':>8} | {skewness:7.3f}")
    
    # Plot distribution
    y = stats.beta.pdf(x, alpha, beta_param)
    ax.plot(x, y, color=colors[i], linewidth=2, label=f'{n_verts} vertices')
    
    # Mark mode and mean
    ax.axvline(mode, color=colors[i], linestyle='--', alpha=0.5)
    ax.axvline(mean, color=colors[i], linestyle=':', alpha=0.5)

ax.set_xlabel('Normalized Volume')
ax.set_ylabel('Density')
ax.set_title('Beta Distributions: Modes (--) and Means (:)')
ax.legend()
ax.grid(True, alpha=0.3)

# Plot 2: Mode and mean evolution
ax = axes[0, 1]
vertices = list(data.keys())
modes = []
means = []
for n_verts in vertices:
    alpha, beta_param = data[n_verts]["alpha"], data[n_verts]["beta"]
    if alpha > 1 and beta_param > 1:
        mode = (alpha - 1) / (alpha + beta_param - 2)
    else:
        mode = 0 if alpha < 1 else 1
    modes.append(mode)
    means.append(data[n_verts]["mean_ratio"])

ax.plot(vertices, modes, 'ro-', markersize=10, linewidth=2, label='Mode/Max')
ax.plot(vertices, means, 'bo-', markersize=10, linewidth=2, label='Mean/Max')
ax.axhline(1.0, color='green', linestyle='--', alpha=0.5, label='Maximum')
ax.set_xlabel('Number of Vertices')
ax.set_ylabel('Ratio to Maximum')
ax.set_title('Where is the Distribution Centered?')
ax.legend()
ax.grid(True, alpha=0.3)
ax.set_ylim(0, 1.1)

# Plot 3: Alpha vs Beta parameters
ax = axes[1, 0]
alphas = [data[v]["alpha"] for v in vertices]
betas = [data[v]["beta"] for v in vertices]

ax.plot(vertices, alphas, 'go-', markersize=10, linewidth=2, label='α')
ax.plot(vertices, betas, 'mo-', markersize=10, linewidth=2, label='β')
ax.set_xlabel('Number of Vertices')
ax.set_ylabel('Parameter Value')
ax.set_title('Beta Distribution Parameters')
ax.legend()
ax.grid(True, alpha=0.3)

# Add annotations for α > β or α < β
for i, v in enumerate(vertices):
    if alphas[i] > betas[i]:
        ax.text(v, max(alphas[i], betas[i]) + 0.5, 'α > β', 
                ha='center', fontsize=10, color='darkgreen')
    else:
        ax.text(v, max(alphas[i], betas[i]) + 0.5, 'α < β', 
                ha='center', fontsize=10, color='darkred')

# Plot 4: Analysis summary
ax = axes[1, 1]
ax.text(0.5, 0.95, "Concentration Analysis", 
        fontsize=16, weight='bold', ha='center', transform=ax.transAxes)

analysis = """
Key findings:

• 4 vertices: Nearly symmetric (α ≈ β)
  → Mode ≈ Mean ≈ 0.53 (middle)
  
• 5 vertices: Strongly right-skewed (α >> β)
  → Mode = 0.73 > Mean = 0.66
  → Concentrating toward maximum!
  
• 6 vertices: Moderately right-skewed
  → Mode = 0.58, Mean = 0.62
  → Concentrating in upper-middle

Pattern: As vertices increase, distribution
first shifts toward maximum (5 vertices),
then moderately retreats (6 vertices).

This suggests optimal configurations become
relatively rarer with more degrees of freedom.
"""

ax.text(0.05, 0.05, analysis, fontsize=11, 
        ha='left', va='bottom', transform=ax.transAxes,
        family='monospace')
ax.axis('off')

plt.tight_layout()
plt.savefig('concentration_location_analysis.png', dpi=150)
print("\nSaved analysis to concentration_location_analysis.png")

# Additional insight
print("\n\nDeeper insight:")
print("-"*70)
print("The 5-vertex case is special: α >> β means the distribution")
print("is heavily skewed toward the maximum. This suggests that")
print("the triangular bipyramid configuration is relatively easy")
print("to approximate with random vertices.")
print()
print("The 6-vertex case shows α/β ≈ 1.6, less extreme than")
print("the 5-vertex case (α/β ≈ 2.7). This might reflect")
print("increased geometric constraints or combinatorial complexity.")

# Quantify how close typical configurations get to maximum
print("\n\nTypical configuration analysis:")
print("-"*70)
for n_verts in vertices:
    alpha, beta_param = data[n_verts]["alpha"], data[n_verts]["beta"]
    
    # What percentile is 90% of maximum?
    percentile_90 = stats.beta.cdf(0.9, alpha, beta_param) * 100
    percentile_95 = stats.beta.cdf(0.95, alpha, beta_param) * 100
    percentile_99 = stats.beta.cdf(0.99, alpha, beta_param) * 100
    
    print(f"\n{n_verts} vertices:")
    print(f"  {100-percentile_90:.1f}% of configurations exceed 90% of maximum")
    print(f"  {100-percentile_95:.1f}% of configurations exceed 95% of maximum")
    print(f"  {100-percentile_99:.2f}% of configurations exceed 99% of maximum")

plt.close()