Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,504 Bytes
e0ef700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#!/usr/bin/env python3
"""
Generate random points, compute Delaunay triangulation, and analyze optimal angles.
"""
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent))
import numpy as np
import json
from scipy.spatial import Delaunay
from fractions import Fraction
from collections import Counter
from ideal_poly_volume_toolkit.rivin_delaunay import check_delaunay_realizability, build_edge_adjacency
def continued_fraction_convergents(x, max_terms=20):
"""Compute convergents of continued fraction expansion."""
convergents = []
a = []
remainder = x
for _ in range(max_terms):
floor_val = int(np.floor(remainder))
a.append(floor_val)
if abs(remainder - floor_val) < 1e-12:
break
remainder = 1.0 / (remainder - floor_val)
p_prev, p_curr = 0, 1
q_prev, q_curr = 1, 0
for ai in a:
p_next = ai * p_curr + p_prev
q_next = ai * q_curr + q_prev
convergents.append((p_next, q_next))
p_prev, p_curr = p_curr, p_next
q_prev, q_curr = q_curr, q_next
return convergents
def analyze_random_configuration(n_vertices=89, seed=42):
"""Generate random configuration and analyze optimal angles."""
print(f"βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print(f"RANDOM CONFIGURATION ANALYSIS")
print(f"βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print(f"\nNumber of vertices: {n_vertices}")
print(f"Random seed: {seed}")
# Generate random points in unit disk
print(f"\n{'β'*63}")
print(f"STEP 1: Generate random points")
print(f"{'β'*63}")
np.random.seed(seed)
# Generate points in polar coordinates for better distribution
radii = np.sqrt(np.random.uniform(0, 1, n_vertices))
angles = np.random.uniform(0, 2*np.pi, n_vertices)
vertices_complex = radii * np.exp(1j * angles)
points = np.column_stack([vertices_complex.real, vertices_complex.imag])
print(f"Generated {n_vertices} random points in unit disk")
# Compute Delaunay triangulation
print(f"\n{'β'*63}")
print(f"STEP 2: Compute Delaunay triangulation (combinatorics)")
print(f"{'β'*63}")
tri = Delaunay(points)
triangulation = [tuple(sorted(simplex)) for simplex in tri.simplices]
triangulation = sorted(set(triangulation))
print(f"Triangulation computed: {len(triangulation)} triangles")
# Compute optimal angles using Rivin LP
print(f"\n{'β'*63}")
print(f"STEP 3: Compute optimal angles via Rivin LP")
print(f"{'β'*63}")
result = check_delaunay_realizability(triangulation, verbose=False, strict=False)
if not result['realizable']:
print("ERROR: Triangulation not realizable!")
return None
print(f"β Triangulation is realizable")
# Extract angles
angles_scaled = result['angles']
angles_radians = angles_scaled * np.pi
n_triangles = len(triangulation)
angles_array = angles_radians.reshape((n_triangles, 3))
# Compute interior edge dihedral angles
print(f"\n{'β'*63}")
print(f"STEP 4: Compute dihedral angles")
print(f"{'β'*63}")
edge_adjacency = build_edge_adjacency(triangulation)
dihedrals = []
for edge, opposite_corners in sorted(edge_adjacency.items()):
if len(opposite_corners) == 2:
angle1 = angles_array[opposite_corners[0][0], opposite_corners[0][1]]
angle2 = angles_array[opposite_corners[1][0], opposite_corners[1][1]]
dihedral = angle1 + angle2
normalized = dihedral / np.pi
# Find best rational approximation
convergents = continued_fraction_convergents(normalized)
if convergents:
best_p, best_q = convergents[-1]
error = abs(normalized - best_p / best_q)
dihedrals.append({
'edge': edge,
'angle_rad': float(dihedral),
'angle_deg': float(np.degrees(dihedral)),
'normalized': float(normalized),
'p': int(best_p),
'q': int(best_q),
'error': float(error),
'rational': f"{best_p}Ο/{best_q}" if best_q > 1 else f"{best_p}Ο",
})
print(f"Computed {len(dihedrals)} interior edge dihedrals")
# Analyze rational patterns
print(f"\n{'β'*63}")
print(f"RATIONAL ANGLE ANALYSIS")
print(f"{'β'*63}")
max_denominator = 200
small_error_threshold = 1e-6
# Count denominators with small error
small_q_dihedrals = [d for d in dihedrals if d['q'] <= max_denominator and d['error'] < small_error_threshold]
denominator_counts = Counter(d['q'] for d in small_q_dihedrals)
print(f"\nDenominators q β€ {max_denominator} with error < {small_error_threshold}:")
print(f"\n{'Denominator':>12} {'Count':>8} {'Relation to n':>20}")
print(f"{'-'*42}")
for q in sorted(denominator_counts.keys()):
count = denominator_counts[q]
relation = ""
if q == n_vertices - 2:
relation = "= n-2"
elif q == n_vertices - 3:
relation = "= n-3"
elif q == n_vertices - 1:
relation = "= n-1"
elif q == n_vertices:
relation = "= n"
print(f" q={q:>3} {count:7d} {relation:>20}")
# Check if ALL angles have small denominators
if len(small_q_dihedrals) == len(dihedrals):
print(f"\nβ ALL {len(dihedrals)} interior edges have rational angles with q β€ {max_denominator}!")
# Find the dominant denominator
most_common_q = denominator_counts.most_common(1)[0][0]
print(f"\nMost common denominator: q = {most_common_q}", end="")
if most_common_q == n_vertices - 2:
print(f" = n-2 β
")
elif most_common_q == n_vertices - 3:
print(f" = n-3 β
")
else:
print()
else:
print(f"\n{len(small_q_dihedrals)}/{len(dihedrals)} edges have rational angles")
# Show pattern distribution
print(f"\n{'β'*63}")
print(f"RATIONAL PATTERN DISTRIBUTION")
print(f"{'β'*63}")
pattern_counts = Counter(d['rational'] for d in small_q_dihedrals)
print(f"\n{'Pattern':>10} {'Count':>8} {'Degrees':>12}")
print(f"{'-'*32}")
for pattern, count in pattern_counts.most_common(10):
angle_deg = next(d['angle_deg'] for d in small_q_dihedrals if d['rational'] == pattern)
print(f" {pattern:>8} {count:7d} {angle_deg:11.3f}Β°")
# Sample angles
print(f"\n{'β'*63}")
print(f"SAMPLE DIHEDRAL ANGLES (first 10)")
print(f"{'β'*63}")
print(f"{'Edge':>12} {'Degrees':>10} {'Rational':>12} {'Error':>12}")
print(f"{'-'*48}")
for d in dihedrals[:10]:
print(f" {str(d['edge']):>10} {d['angle_deg']:9.3f}Β° {d['rational']:>12} {d['error']:11.2e}")
# Save results
output_data = {
'n_vertices': n_vertices,
'n_triangles': n_triangles,
'n_interior_edges': len(dihedrals),
'seed': seed,
'vertex_positions': {
'real': vertices_complex.real.tolist(),
'imag': vertices_complex.imag.tolist(),
},
'triangulation': [[int(v) for v in tri] for tri in triangulation],
'denominator_counts': {int(k): int(v) for k, v in denominator_counts.items()},
'all_rational': len(small_q_dihedrals) == len(dihedrals),
}
output_file = Path(f"results/data/{n_vertices}vertex_random_analysis_seed{seed}.json")
output_file.parent.mkdir(parents=True, exist_ok=True)
with open(output_file, 'w') as f:
json.dump(output_data, f, indent=2)
print(f"\n{'β'*63}")
print(f"β Results saved to: {output_file}")
print(f"{'β'*63}")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Analyze random triangulation with optimal angles')
parser.add_argument('--vertices', type=int, default=89, help='Number of vertices')
parser.add_argument('--seed', type=int, default=42, help='Random seed')
args = parser.parse_args()
analyze_random_configuration(n_vertices=args.vertices, seed=args.seed)
|