File size: 10,372 Bytes
e0ef700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python3
"""
Analyze the distribution of spanning trees and identify what makes
some triangulations "vastly more forested" than others.
"""

import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent.parent))

import json
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter

def analyze_distribution(data_file: str):
    """Analyze spanning tree distribution in detail."""

    with open(data_file, 'r') as f:
        data = json.load(f)

    tris = data['raw_data']['triangulations']

    print("="*70)
    print("SPANNING TREE DISTRIBUTION ANALYSIS")
    print("="*70)
    print(f"\nTotal triangulations: {len(tris)}")

    # Extract spanning tree counts
    spanning_trees = np.array([t['n_spanning_trees'] for t in tris])
    log_spanning_trees = np.log1p(spanning_trees)  # log(1+x) to handle zeros

    # Partition by realizability
    standard_real = [t for t in tris if t['standard_realizable']]
    standard_nonreal = [t for t in tris if not t['standard_realizable']]
    strict_real = [t for t in tris if t['strict_realizable']]
    strict_nonreal = [t for t in tris if not t['strict_realizable']]

    st_standard_real = np.array([t['n_spanning_trees'] for t in standard_real])
    st_standard_nonreal = np.array([t['n_spanning_trees'] for t in standard_nonreal])
    st_strict_real = np.array([t['n_spanning_trees'] for t in strict_real])
    st_strict_nonreal = np.array([t['n_spanning_trees'] for t in strict_nonreal])

    # Log-transformed statistics
    print("\n" + "="*70)
    print("LOG-TRANSFORMED STATISTICS: log(1 + spanning_trees)")
    print("="*70)

    print("\n--- STANDARD REALIZABILITY ---")
    print(f"Realizable:")
    print(f"  Log mean: {np.mean(np.log1p(st_standard_real)):.3f}")
    print(f"  Log median: {np.median(np.log1p(st_standard_real)):.3f}")
    print(f"  Log std: {np.std(np.log1p(st_standard_real)):.3f}")

    print(f"\nNon-realizable:")
    print(f"  Log mean: {np.mean(np.log1p(st_standard_nonreal)):.3f}")
    print(f"  Log median: {np.median(np.log1p(st_standard_nonreal)):.3f}")
    print(f"  Log std: {np.std(np.log1p(st_standard_nonreal)):.3f}")

    print("\n--- STRICT REALIZABILITY ---")
    print(f"Strict realizable:")
    print(f"  Log mean: {np.mean(np.log1p(st_strict_real)):.3f}")
    print(f"  Log median: {np.median(np.log1p(st_strict_real)):.3f}")
    print(f"  Log std: {np.std(np.log1p(st_strict_real)):.3f}")

    print(f"\nStrict non-realizable:")
    print(f"  Log mean: {np.mean(np.log1p(st_strict_nonreal)):.3f}")
    print(f"  Log median: {np.median(np.log1p(st_strict_nonreal)):.3f}")
    print(f"  Log std: {np.std(np.log1p(st_strict_nonreal)):.3f}")

    # Identify extreme cases
    print("\n" + "="*70)
    print("EXTREME CASES: Most Forested Triangulations")
    print("="*70)

    # Sort by spanning trees
    tris_sorted = sorted(tris, key=lambda t: t['n_spanning_trees'], reverse=True)

    print("\nTop 20 most forested triangulations:")
    print(f"{'Rank':<6} {'Index':<8} {'Spanning':<10} {'Vertices':<10} {'Edges':<8} {'Std Real':<10} {'Strict Real':<12}")
    print("-"*70)

    for rank, t in enumerate(tris_sorted[:20], 1):
        print(f"{rank:<6} {t['index']:<8} {t['n_spanning_trees']:<10} "
              f"{t['n_vertices']:<10} {t['n_edges']:<8} "
              f"{'Yes' if t['standard_realizable'] else 'No':<10} "
              f"{'Yes' if t['strict_realizable'] else 'No':<12}")

    # Analyze bottom cases
    print("\n" + "="*70)
    print("EXTREME CASES: Least Forested Triangulations")
    print("="*70)

    # Count zeros
    n_zero = sum(1 for t in tris if t['n_spanning_trees'] == 0)
    print(f"\nTriangulations with ZERO spanning trees: {n_zero} ({100*n_zero/len(tris):.2f}%)")

    if n_zero > 0:
        zero_tris = [t for t in tris if t['n_spanning_trees'] == 0]
        n_real = sum(1 for t in zero_tris if t['standard_realizable'])
        n_strict = sum(1 for t in zero_tris if t['strict_realizable'])
        print(f"  Standard realizable: {n_real} ({100*n_real/n_zero:.1f}%)")
        print(f"  Strict realizable: {n_strict} ({100*n_strict/n_zero:.1f}%)")

    print("\nBottom 20 least forested (non-zero):")
    nonzero_tris = [t for t in tris if t['n_spanning_trees'] > 0]
    tris_sorted_bottom = sorted(nonzero_tris, key=lambda t: t['n_spanning_trees'])

    print(f"{'Rank':<6} {'Index':<8} {'Spanning':<10} {'Vertices':<10} {'Edges':<8} {'Std Real':<10} {'Strict Real':<12}")
    print("-"*70)

    for rank, t in enumerate(tris_sorted_bottom[:20], 1):
        print(f"{rank:<6} {t['index']:<8} {t['n_spanning_trees']:<10} "
              f"{t['n_vertices']:<10} {t['n_edges']:<8} "
              f"{'Yes' if t['standard_realizable'] else 'No':<10} "
              f"{'Yes' if t['strict_realizable'] else 'No':<12}")

    # Analyze correlation with graph properties
    print("\n" + "="*70)
    print("CORRELATION WITH GRAPH PROPERTIES")
    print("="*70)

    vertices = np.array([t['n_vertices'] for t in tris])
    edges = np.array([t['n_edges'] for t in tris])

    # Compute correlations
    corr_vertices = np.corrcoef(spanning_trees, vertices)[0, 1]
    corr_edges = np.corrcoef(spanning_trees, edges)[0, 1]
    corr_log_vertices = np.corrcoef(log_spanning_trees, vertices)[0, 1]
    corr_log_edges = np.corrcoef(log_spanning_trees, edges)[0, 1]

    print(f"\nPearson correlation (raw):")
    print(f"  Spanning trees vs vertices: {corr_vertices:.4f}")
    print(f"  Spanning trees vs edges: {corr_edges:.4f}")

    print(f"\nPearson correlation (log-transformed):")
    print(f"  log(spanning trees) vs vertices: {corr_log_vertices:.4f}")
    print(f"  log(spanning trees) vs edges: {corr_log_edges:.4f}")

    # Percentile analysis
    print("\n" + "="*70)
    print("PERCENTILE ANALYSIS")
    print("="*70)

    percentiles = [0, 1, 5, 10, 25, 50, 75, 90, 95, 99, 100]
    values = np.percentile(spanning_trees, percentiles)

    print(f"\n{'Percentile':<12} {'Value':<12} {'log(1+value)':<15}")
    print("-"*40)
    for p, v in zip(percentiles, values):
        print(f"{p:<12} {int(v):<12} {np.log1p(v):<15.3f}")

    # Create visualizations
    create_visualizations(data, tris, spanning_trees, log_spanning_trees,
                         st_standard_real, st_standard_nonreal,
                         st_strict_real, st_strict_nonreal)


def create_visualizations(data, tris, spanning_trees, log_spanning_trees,
                          st_standard_real, st_standard_nonreal,
                          st_strict_real, st_strict_nonreal):
    """Create distribution plots."""

    fig, axes = plt.subplots(2, 3, figsize=(18, 12))

    # 1. Overall distribution (linear)
    ax = axes[0, 0]
    ax.hist(spanning_trees, bins=100, alpha=0.7, edgecolor='black')
    ax.set_xlabel('Number of spanning trees')
    ax.set_ylabel('Frequency')
    ax.set_title('Overall Distribution (Linear Scale)')
    ax.axvline(np.mean(spanning_trees), color='red', linestyle='--',
               label=f'Mean: {np.mean(spanning_trees):.1f}')
    ax.axvline(np.median(spanning_trees), color='blue', linestyle='--',
               label=f'Median: {np.median(spanning_trees):.1f}')
    ax.legend()
    ax.grid(True, alpha=0.3)

    # 2. Overall distribution (log)
    ax = axes[0, 1]
    ax.hist(log_spanning_trees, bins=100, alpha=0.7, edgecolor='black')
    ax.set_xlabel('log(1 + spanning trees)')
    ax.set_ylabel('Frequency')
    ax.set_title('Overall Distribution (Log-Transformed)')
    ax.axvline(np.mean(log_spanning_trees), color='red', linestyle='--',
               label=f'Mean: {np.mean(log_spanning_trees):.2f}')
    ax.axvline(np.median(log_spanning_trees), color='blue', linestyle='--',
               label=f'Median: {np.median(log_spanning_trees):.2f}')
    ax.legend()
    ax.grid(True, alpha=0.3)

    # 3. Standard realizability comparison (log)
    ax = axes[0, 2]
    ax.hist(np.log1p(st_standard_real), bins=50, alpha=0.5,
            label=f'Realizable (n={len(st_standard_real)})', color='green', edgecolor='black')
    ax.hist(np.log1p(st_standard_nonreal), bins=50, alpha=0.5,
            label=f'Non-realizable (n={len(st_standard_nonreal)})', color='red', edgecolor='black')
    ax.set_xlabel('log(1 + spanning trees)')
    ax.set_ylabel('Frequency')
    ax.set_title('Standard Realizability (Log Scale)')
    ax.legend()
    ax.grid(True, alpha=0.3)

    # 4. Strict realizability comparison (log)
    ax = axes[1, 0]
    ax.hist(np.log1p(st_strict_real), bins=50, alpha=0.5,
            label=f'Strict (n={len(st_strict_real)})', color='blue', edgecolor='black')
    ax.hist(np.log1p(st_strict_nonreal), bins=50, alpha=0.5,
            label=f'Non-strict (n={len(st_strict_nonreal)})', color='orange', edgecolor='black')
    ax.set_xlabel('log(1 + spanning trees)')
    ax.set_ylabel('Frequency')
    ax.set_title('Strict Realizability (Log Scale)')
    ax.legend()
    ax.grid(True, alpha=0.3)

    # 5. Scatter: vertices vs log(spanning trees)
    ax = axes[1, 1]
    vertices = np.array([t['n_vertices'] for t in tris])
    ax.scatter(vertices, log_spanning_trees, alpha=0.3, s=10)
    ax.set_xlabel('Number of vertices')
    ax.set_ylabel('log(1 + spanning trees)')
    ax.set_title('Vertices vs Log(Spanning Trees)')
    ax.grid(True, alpha=0.3)

    # 6. Scatter: edges vs log(spanning trees)
    ax = axes[1, 2]
    edges = np.array([t['n_edges'] for t in tris])
    ax.scatter(edges, log_spanning_trees, alpha=0.3, s=10)
    ax.set_xlabel('Number of edges')
    ax.set_ylabel('log(1 + spanning trees)')
    ax.set_title('Edges vs Log(Spanning Trees)')
    ax.grid(True, alpha=0.3)

    plt.tight_layout()

    # Save figure
    n = data['parameters']['n_vertices']
    output_path = f'results/plots/spanning_tree_analysis_n{n}.png'
    Path(output_path).parent.mkdir(parents=True, exist_ok=True)
    plt.savefig(output_path, dpi=150, bbox_inches='tight')
    print(f"\n{'='*70}")
    print(f"Plots saved to: {output_path}")
    print(f"{'='*70}")

    plt.close()


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description='Analyze spanning tree distribution')
    parser.add_argument('--data', type=str,
                       default='results/spanning_trees_n10.json',
                       help='Path to spanning trees data JSON')

    args = parser.parse_args()

    analyze_distribution(args.data)