Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 14,242 Bytes
e0ef700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
#!/usr/bin/env python3
"""
Analyze the relationship between spanning tree counts and Delaunay realizability.
Tests the hypothesis that realizable triangulations have more spanning trees.
"""
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent.parent))
import numpy as np
import networkx as nx
from ideal_poly_volume_toolkit.plantri_interface import find_plantri_executable
from ideal_poly_volume_toolkit.rivin_delaunay import check_delaunay_realizability
from ideal_poly_volume_toolkit.planar_utils import extract_faces_from_planar_embedding
import subprocess
import json
from collections import defaultdict
import matplotlib.pyplot as plt
def get_triangulations_text(n_vertices: int, min_connectivity: int = 3) -> list:
"""Generate triangulations in ASCII format."""
plantri = find_plantri_executable()
if plantri is None:
raise RuntimeError("plantri not found")
args = [plantri, f'-pc{min_connectivity}', '-a', str(n_vertices)]
result = subprocess.run(args, capture_output=True, text=True)
triangulations = []
for line in result.stdout.split('\n'):
line = line.strip()
if not line or line.startswith('>'):
continue
parts = line.split(maxsplit=1)
if len(parts) != 2:
continue
n = int(parts[0])
adj_str = parts[1]
# Build adjacency dict
adj = {}
vertex_lists = adj_str.split(',')
for v_idx, neighbor_str in enumerate(vertex_lists):
neighbors = []
for letter in neighbor_str:
neighbor_idx = ord(letter) - ord('a')
neighbors.append(neighbor_idx)
adj[v_idx] = neighbors
# Extract faces from planar embedding (adjacency lists are in cyclic order)
triangles = extract_faces_from_planar_embedding(n, adj)
if triangles:
triangulations.append(triangles)
return triangulations
def remove_vertex_to_planar(triangles: list, vertex_to_remove: int) -> list:
"""Remove a vertex to create planar triangulation."""
return [tri for tri in triangles if vertex_to_remove not in tri]
def triangles_to_graph(triangles: list) -> nx.Graph:
"""Convert triangle list to NetworkX graph."""
G = nx.Graph()
for tri in triangles:
v0, v1, v2 = tri
G.add_edge(v0, v1)
G.add_edge(v1, v2)
G.add_edge(v2, v0)
return G
def count_spanning_trees_kirchhoff(G: nx.Graph) -> int:
"""
Count spanning trees using Kirchhoff's matrix-tree theorem.
The number of spanning trees equals any cofactor of the Laplacian matrix.
We compute the determinant of the Laplacian with one row/column deleted.
"""
if len(G.nodes()) == 0:
return 0
if len(G.nodes()) == 1:
return 1
# Get Laplacian matrix
L = nx.laplacian_matrix(G).toarray()
# Remove first row and column (compute cofactor)
L_reduced = L[1:, 1:]
# Compute determinant (this is the number of spanning trees)
det = np.linalg.det(L_reduced)
# Round to nearest integer (should be exact integer, but floating point)
return int(round(det))
def analyze_n_vertices(n: int, min_connectivity: int = 3, verbose: bool = True):
"""
Analyze spanning trees vs realizability for n vertices.
Args:
n: Number of vertices
min_connectivity: Minimum connectivity
verbose: Print progress
Returns:
Dictionary with analysis results
"""
if verbose:
print(f"\n{'='*70}")
print(f"Analyzing n={n} vertices ({min_connectivity}-connected)")
print(f"{'='*70}")
# Generate all closed triangulations
if verbose:
print(f"\nGenerating closed triangulations...")
closed_tris = get_triangulations_text(n, min_connectivity)
if verbose:
print(f"Generated {len(closed_tris)} closed triangulations")
# Convert to planar and analyze
if verbose:
print(f"Converting to planar (remove vertex 0) and analyzing...")
results = {
'n_vertices': n,
'min_connectivity': min_connectivity,
'triangulations': [],
}
for idx, closed_tri in enumerate(closed_tris):
if verbose and (idx + 1) % 1000 == 0:
print(f" Processed {idx+1}/{len(closed_tris)}...")
# Convert to planar
planar_tri = remove_vertex_to_planar(closed_tri, 0)
# Create graph
G = triangles_to_graph(planar_tri)
# Count spanning trees
n_spanning_trees = count_spanning_trees_kirchhoff(G)
# Test realizability
try:
result_standard = check_delaunay_realizability(planar_tri, verbose=False, strict=False)
result_strict = check_delaunay_realizability(planar_tri, verbose=False, strict=True)
except Exception as e:
# Skip degenerate cases
if verbose and idx < 10:
print(f" Warning: Skipping triangulation {idx}: {e}")
continue
# Store results
results['triangulations'].append({
'index': idx,
'n_spanning_trees': n_spanning_trees,
'standard_realizable': bool(result_standard['realizable']),
'strict_realizable': bool(result_strict['realizable']),
'n_edges': G.number_of_edges(),
'n_vertices': G.number_of_nodes(),
})
return results
def compute_statistics(results: dict):
"""Compute statistics from results."""
tris = results['triangulations']
# Partition by realizability
standard_real = [t for t in tris if t['standard_realizable']]
standard_nonreal = [t for t in tris if not t['standard_realizable']]
strict_real = [t for t in tris if t['strict_realizable']]
strict_nonreal = [t for t in tris if not t['strict_realizable']]
# Among standard realizable, partition by strict
standard_real_strict_yes = [t for t in standard_real if t['strict_realizable']]
standard_real_strict_no = [t for t in standard_real if not t['strict_realizable']]
stats = {
'total': len(tris),
'standard_realizable': {
'count': len(standard_real),
'spanning_trees': {
'mean': np.mean([t['n_spanning_trees'] for t in standard_real]) if standard_real else 0,
'median': np.median([t['n_spanning_trees'] for t in standard_real]) if standard_real else 0,
'std': np.std([t['n_spanning_trees'] for t in standard_real]) if standard_real else 0,
'min': min([t['n_spanning_trees'] for t in standard_real]) if standard_real else 0,
'max': max([t['n_spanning_trees'] for t in standard_real]) if standard_real else 0,
}
},
'standard_non_realizable': {
'count': len(standard_nonreal),
'spanning_trees': {
'mean': np.mean([t['n_spanning_trees'] for t in standard_nonreal]) if standard_nonreal else 0,
'median': np.median([t['n_spanning_trees'] for t in standard_nonreal]) if standard_nonreal else 0,
'std': np.std([t['n_spanning_trees'] for t in standard_nonreal]) if standard_nonreal else 0,
'min': min([t['n_spanning_trees'] for t in standard_nonreal]) if standard_nonreal else 0,
'max': max([t['n_spanning_trees'] for t in standard_nonreal]) if standard_nonreal else 0,
}
},
'strict_realizable': {
'count': len(strict_real),
'spanning_trees': {
'mean': np.mean([t['n_spanning_trees'] for t in strict_real]) if strict_real else 0,
'median': np.median([t['n_spanning_trees'] for t in strict_real]) if strict_real else 0,
'std': np.std([t['n_spanning_trees'] for t in strict_real]) if strict_real else 0,
'min': min([t['n_spanning_trees'] for t in strict_real]) if strict_real else 0,
'max': max([t['n_spanning_trees'] for t in strict_real]) if strict_real else 0,
}
},
'strict_non_realizable': {
'count': len(strict_nonreal),
'spanning_trees': {
'mean': np.mean([t['n_spanning_trees'] for t in strict_nonreal]) if strict_nonreal else 0,
'median': np.median([t['n_spanning_trees'] for t in strict_nonreal]) if strict_nonreal else 0,
'std': np.std([t['n_spanning_trees'] for t in strict_nonreal]) if strict_nonreal else 0,
'min': min([t['n_spanning_trees'] for t in strict_nonreal]) if strict_nonreal else 0,
'max': max([t['n_spanning_trees'] for t in strict_nonreal]) if strict_nonreal else 0,
}
},
'among_standard_realizable': {
'strict_yes': {
'count': len(standard_real_strict_yes),
'spanning_trees': {
'mean': np.mean([t['n_spanning_trees'] for t in standard_real_strict_yes]) if standard_real_strict_yes else 0,
'median': np.median([t['n_spanning_trees'] for t in standard_real_strict_yes]) if standard_real_strict_yes else 0,
}
},
'strict_no': {
'count': len(standard_real_strict_no),
'spanning_trees': {
'mean': np.mean([t['n_spanning_trees'] for t in standard_real_strict_no]) if standard_real_strict_no else 0,
'median': np.median([t['n_spanning_trees'] for t in standard_real_strict_no]) if standard_real_strict_no else 0,
}
}
}
}
return stats
def print_statistics(stats: dict, n: int):
"""Print statistics in readable format."""
print(f"\n{'='*70}")
print(f"STATISTICS FOR n={n}")
print(f"{'='*70}")
print(f"\nTotal triangulations: {stats['total']}")
print(f"\n--- STANDARD REALIZABILITY ---")
print(f"Realizable: {stats['standard_realizable']['count']} ({100*stats['standard_realizable']['count']/stats['total']:.1f}%)")
print(f" Spanning trees (mean): {stats['standard_realizable']['spanning_trees']['mean']:.1f}")
print(f" Spanning trees (median): {stats['standard_realizable']['spanning_trees']['median']:.1f}")
print(f" Spanning trees (range): [{stats['standard_realizable']['spanning_trees']['min']}, {stats['standard_realizable']['spanning_trees']['max']}]")
print(f"\nNon-realizable: {stats['standard_non_realizable']['count']} ({100*stats['standard_non_realizable']['count']/stats['total']:.1f}%)")
print(f" Spanning trees (mean): {stats['standard_non_realizable']['spanning_trees']['mean']:.1f}")
print(f" Spanning trees (median): {stats['standard_non_realizable']['spanning_trees']['median']:.1f}")
if stats['standard_non_realizable']['count'] > 0:
print(f" Spanning trees (range): [{stats['standard_non_realizable']['spanning_trees']['min']}, {stats['standard_non_realizable']['spanning_trees']['max']}]")
# Ratio
if stats['standard_non_realizable']['spanning_trees']['mean'] > 0:
ratio = stats['standard_realizable']['spanning_trees']['mean'] / stats['standard_non_realizable']['spanning_trees']['mean']
print(f"\nRatio (realizable/non-realizable): {ratio:.2f}x")
print(f"\n--- STRICT REALIZABILITY ---")
print(f"Strict realizable: {stats['strict_realizable']['count']} ({100*stats['strict_realizable']['count']/stats['total']:.1f}%)")
print(f" Spanning trees (mean): {stats['strict_realizable']['spanning_trees']['mean']:.1f}")
print(f" Spanning trees (median): {stats['strict_realizable']['spanning_trees']['median']:.1f}")
print(f"\nStrict non-realizable: {stats['strict_non_realizable']['count']} ({100*stats['strict_non_realizable']['count']/stats['total']:.1f}%)")
print(f" Spanning trees (mean): {stats['strict_non_realizable']['spanning_trees']['mean']:.1f}")
print(f" Spanning trees (median): {stats['strict_non_realizable']['spanning_trees']['median']:.1f}")
# Ratio
if stats['strict_non_realizable']['spanning_trees']['mean'] > 0:
ratio = stats['strict_realizable']['spanning_trees']['mean'] / stats['strict_non_realizable']['spanning_trees']['mean']
print(f"\nRatio (strict/non-strict): {ratio:.2f}x")
print(f"\n--- AMONG STANDARD REALIZABLE: STRICT vs NON-STRICT ---")
print(f"Strict YES: {stats['among_standard_realizable']['strict_yes']['count']}")
print(f" Spanning trees (mean): {stats['among_standard_realizable']['strict_yes']['spanning_trees']['mean']:.1f}")
print(f"Strict NO: {stats['among_standard_realizable']['strict_no']['count']}")
print(f" Spanning trees (mean): {stats['among_standard_realizable']['strict_no']['spanning_trees']['mean']:.1f}")
if stats['among_standard_realizable']['strict_no']['spanning_trees']['mean'] > 0:
ratio = stats['among_standard_realizable']['strict_yes']['spanning_trees']['mean'] / stats['among_standard_realizable']['strict_no']['spanning_trees']['mean']
print(f"\nRatio (strict/non-strict among realizable): {ratio:.2f}x")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Analyze spanning trees vs realizability')
parser.add_argument('--n', type=int, default=10, help='Number of vertices')
parser.add_argument('--connectivity', type=int, default=3, choices=[3, 4],
help='Minimum connectivity')
parser.add_argument('--output', type=str, help='Output JSON file')
args = parser.parse_args()
# Run analysis
results = analyze_n_vertices(args.n, args.connectivity, verbose=True)
# Compute statistics
stats = compute_statistics(results)
# Print statistics
print_statistics(stats, args.n)
# Save results
if args.output:
output_data = {
'parameters': {
'n_vertices': args.n,
'min_connectivity': args.connectivity,
},
'statistics': stats,
'raw_data': results,
}
with open(args.output, 'w') as f:
json.dump(output_data, f, indent=2)
print(f"\n{'='*70}")
print(f"Results saved to: {args.output}")
print(f"{'='*70}")
|