File size: 11,365 Bytes
e0ef700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python3
"""
Extract combinatorics and optimal angles from maximal volume configuration.
"""

import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent))

import numpy as np
import json
from scipy.spatial import Delaunay
from ideal_poly_volume_toolkit.rivin_delaunay import check_delaunay_realizability, build_edge_adjacency


def extract_combinatorics_and_angles(json_file):
    """Extract triangulation and optimal angles from optimization result."""

    # Load configuration
    with open(json_file, 'r') as f:
        data = json.load(f)

    # Get vertex positions
    real = np.array(data['best']['vertices_real'])
    imag = np.array(data['best']['vertices_imag'])
    points = np.column_stack([real, imag])

    n_vertices = len(points)
    volume = data['best']['volume']

    print(f"═══════════════════════════════════════════════════════════════")
    print(f"MAXIMAL VOLUME IDEAL POLYHEDRON - COMPLETE ANALYSIS")
    print(f"═══════════════════════════════════════════════════════════════")
    print(f"\nVolume: {volume:.12f}")
    print(f"Vertices: {n_vertices}")

    # Compute Delaunay triangulation
    tri = Delaunay(points)
    triangulation = [tuple(sorted(simplex)) for simplex in tri.simplices]
    triangulation = sorted(set(triangulation))  # Remove duplicates, sort

    print(f"Triangles: {len(triangulation)}")

    # Display triangulation
    print(f"\n{'─'*63}")
    print(f"TRIANGULATION (Combinatorial Structure)")
    print(f"{'─'*63}")
    print("\nTriangles (vertex indices):")
    for i, tri in enumerate(triangulation, 1):
        print(f"  {i:2d}. {tri}")

    # Get optimal angles from Rivin LP
    print(f"\n{'─'*63}")
    print(f"OPTIMAL ANGLES FROM RIVIN LP")
    print(f"{'─'*63}")

    result = check_delaunay_realizability(triangulation, verbose=False, strict=False)

    if not result['realizable']:
        print("ERROR: Configuration not realizable!")
        return

    # Extract angles (convert from scaled units to radians)
    angles_scaled = result['angles']
    angles_radians = angles_scaled * np.pi
    n_triangles = len(triangulation)
    angles_array = angles_radians.reshape((n_triangles, 3))

    print("\nFace angles (interior angles of each triangle):")
    print(f"{'Tri#':>5} {'Vertices':>20} {'Vtx':>5} {'Angle (rad)':>14} {'Angle (deg)':>12} {'Angle/Ο€':>10}")
    print(f"{'-'*70}")

    for i, tri in enumerate(triangulation):
        for j, vertex in enumerate(tri):
            angle_rad = angles_array[i, j]
            angle_deg = np.degrees(angle_rad)
            angle_normalized = angle_rad / np.pi
            tri_str = f"({tri[0]},{tri[1]},{tri[2]})"
            print(f"  {i+1:3d}. {tri_str:>18s} v{vertex:2d}  {angle_rad:13.10f}  {angle_deg:11.6f}Β°  {angle_normalized:9.6f}Ο€")

    # Compute ALL dihedral angles
    print(f"\n{'='*78}")
    print(f"ALL DIHEDRAL ANGLES (Complete Ideal Polyhedron)")
    print(f"{'='*78}")

    from scipy.spatial import ConvexHull
    from fractions import Fraction

    # Find boundary (convex hull)
    hull = ConvexHull(points)
    boundary_edges = set()
    boundary_vertices = set()
    for simplex in hull.simplices:
        edge = tuple(sorted([simplex[0], simplex[1]]))
        boundary_edges.add(edge)
        boundary_vertices.add(simplex[0])
        boundary_vertices.add(simplex[1])

    edge_adjacency = build_edge_adjacency(triangulation)
    interior_edges = [e for e, ops in edge_adjacency.items() if len(ops) == 2]

    print(f"\nTopology:")
    print(f"  Total vertices: {n_vertices}")
    print(f"  Finite triangles: {len(triangulation)}")
    print(f"  Boundary vertices: {len(boundary_vertices)}")
    print(f"  Interior edges: {len(interior_edges)}")
    print(f"  Boundary edges: {len(boundary_edges)}")
    print(f"  Total edges: {len(interior_edges)} + {len(boundary_edges)} + {len(boundary_vertices)} = {len(interior_edges) + len(boundary_edges) + len(boundary_vertices)}")
    print(f"  Expected (3V-6): {3*n_vertices - 6}")

    # TYPE 1: Interior edge dihedrals
    print(f"\n{'─'*78}")
    print(f"TYPE 1: Interior Edge Dihedrals ({len(interior_edges)} edges)")
    print(f"(Edges shared by two finite triangles)")
    print(f"{'─'*78}")

    all_dihedrals = []

    for edge, opposite_corners in sorted(edge_adjacency.items()):
        if len(opposite_corners) == 2:
            angle1 = angles_array[opposite_corners[0][0], opposite_corners[0][1]]
            angle2 = angles_array[opposite_corners[1][0], opposite_corners[1][1]]
            dihedral = angle1 + angle2
            normalized = dihedral / np.pi
            frac = Fraction(normalized).limit_denominator(20)
            rational = f"{frac.numerator}Ο€/{frac.denominator}" if frac.denominator > 1 else f"{frac.numerator}Ο€"

            all_dihedrals.append({
                'type': 'interior',
                'edge': edge,
                'dihedral_rad': dihedral,
                'dihedral_deg': np.degrees(dihedral),
                'normalized': normalized,
                'rational': rational,
                'p': frac.numerator,
                'q': frac.denominator,
            })

    # Print first 10
    for d in all_dihedrals[:10]:
        print(f"  {str(d['edge']):>12}  {d['dihedral_deg']:7.3f}Β° = {d['normalized']:8.6f}Ο€ β‰ˆ {d['rational']:>8}")
    if len(all_dihedrals) > 10:
        print(f"  ... ({len(all_dihedrals) - 10} more)")

    # TYPE 2: Boundary edge dihedrals
    print(f"\n{'─'*78}")
    print(f"TYPE 2: Boundary Edge Dihedrals ({len(boundary_edges)} edges)")
    print(f"(Angle opposite each boundary edge in the triangle containing it)")
    print(f"{'─'*78}")

    boundary_dihedrals = []
    for edge in sorted(boundary_edges):
        # Find the triangle containing this edge
        v1, v2 = edge
        for i, tri in enumerate(triangulation):
            if v1 in tri and v2 in tri:
                # Find the third vertex (opposite to the edge)
                v3 = [v for v in tri if v != v1 and v != v2][0]
                v3_idx = tri.index(v3)
                dihedral = angles_array[i, v3_idx]
                normalized = dihedral / np.pi
                frac = Fraction(normalized).limit_denominator(20)
                rational = f"{frac.numerator}Ο€/{frac.denominator}" if frac.denominator > 1 else f"{frac.numerator}Ο€"

                boundary_dihedrals.append({
                    'type': 'boundary',
                    'edge': edge,
                    'dihedral_rad': dihedral,
                    'dihedral_deg': np.degrees(dihedral),
                    'normalized': normalized,
                    'rational': rational,
                    'p': frac.numerator,
                    'q': frac.denominator,
                })
                print(f"  {str(edge):>12}  {np.degrees(dihedral):7.3f}Β° = {normalized:8.6f}Ο€ β‰ˆ {rational:>8}")
                break

    all_dihedrals.extend(boundary_dihedrals)

    # TYPE 3: Vertex-to-∞ dihedrals
    print(f"\n{'─'*78}")
    print(f"TYPE 3: Vertex-to-∞ Dihedrals ({len(boundary_vertices)} edges)")
    print(f"(Sum of all angles at each boundary vertex)")
    print(f"{'─'*78}")

    vertex_dihedrals = []
    for v in sorted(boundary_vertices):
        # Sum all angles at this vertex
        total_angle = 0
        for i, tri in enumerate(triangulation):
            if v in tri:
                v_idx = tri.index(v)
                total_angle += angles_array[i, v_idx]

        normalized = total_angle / np.pi
        frac = Fraction(normalized).limit_denominator(20)
        rational = f"{frac.numerator}Ο€/{frac.denominator}" if frac.denominator > 1 else f"{frac.numerator}Ο€"

        vertex_dihedrals.append({
            'type': 'to_infinity',
            'edge': (v, 'inf'),
            'dihedral_rad': total_angle,
            'dihedral_deg': np.degrees(total_angle),
            'normalized': normalized,
            'rational': rational,
            'p': frac.numerator,
            'q': frac.denominator,
        })
        print(f"  v{v}β†’βˆž  {np.degrees(total_angle):11.3f}Β° = {normalized:8.6f}Ο€ β‰ˆ {rational:>8}  {'< Ο€ βœ“' if total_angle < np.pi else 'β‰₯ Ο€ βœ—'}")

    all_dihedrals.extend(vertex_dihedrals)
    dihedrals = all_dihedrals  # For later use

    # Summary of rational patterns
    print(f"\n{'─'*63}")
    print(f"RATIONAL ANGLE SUMMARY")
    print(f"{'─'*63}")

    from collections import Counter
    pattern_counts = Counter(d['rational'] for d in dihedrals)

    print(f"\n{'Pattern':>10} {'Count':>8} {'Degrees':>12}")
    print(f"{'-'*32}")
    for pattern, count in pattern_counts.most_common():
        # Get representative angle
        angle_deg = next(d['dihedral_deg'] for d in dihedrals if d['rational'] == pattern)
        print(f"  {pattern:>8}  {count:7d}  {angle_deg:11.3f}Β°")

    # Determine the dominant denominator
    denominator_counts = Counter(d['q'] for d in dihedrals)
    dominant_q = denominator_counts.most_common(1)[0][0]

    print(f"\n{'─'*63}")
    if len(denominator_counts) == 1 and dominant_q > 1:
        print(f"VERIFICATION: All angles are exact multiples of Ο€/{dominant_q}!")
    else:
        print(f"VERIFICATION: All angles are exact rational multiples of Ο€!")
    print(f"{'─'*63}")

    # Export to JSON
    output_data = {
        'metadata': {
            'source_file': str(json_file),
            'volume': float(volume),
            'n_vertices': int(n_vertices),
            'n_triangles': len(triangulation),
        },
        'combinatorics': {
            'triangles': [[int(v) for v in tri] for tri in triangulation],
        },
        'optimal_angles': {
            'face_angles_radians': angles_array.tolist(),
            'face_angles_degrees': np.degrees(angles_array).tolist(),
            'dihedral_angles': [
                {
                    'type': d['type'],
                    'edge': [int(d['edge'][0]), str(d['edge'][1])],  # Handle 'inf' for vertex-to-∞
                    'angle_radians': float(d['dihedral_rad']),
                    'angle_degrees': float(d['dihedral_deg']),
                    'rational_form': d['rational'],
                    'p': int(d['p']),
                    'q': int(d['q']),
                }
                for d in dihedrals
            ],
        },
        'vertex_positions': {
            'real': real.tolist(),
            'imag': imag.tolist(),
        },
    }

    # Generate output filename based on input file
    input_name = Path(json_file).stem
    output_file = Path(f'results/data/{input_name}_combinatorics.json')
    output_file.parent.mkdir(parents=True, exist_ok=True)

    with open(output_file, 'w') as f:
        json.dump(output_data, f, indent=2)

    print(f"\nβœ“ Exported to: {output_file}")


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description='Extract combinatorics and optimal angles from maximal volume config')
    parser.add_argument('json_file', help='Path to optimization result JSON file')
    args = parser.parse_args()

    extract_combinatorics_and_angles(args.json_file)