Spaces:
Sleeping
Sleeping
File size: 1,923 Bytes
f9b644c 3bf2012 f9b644c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
#!/usr/bin/env python3
"""
Visualize the 7-vertex configuration to understand the structure.
"""
import numpy as np
import matplotlib.pyplot as plt
# The configuration from our optimization
Z = [complex(0, 0), complex(1, 0),
complex(-0.9959, 0.1942), complex(-0.4018, -0.9331),
complex(0.8441, -1.2772), complex(0.3669, -0.5609)]
# Create plot
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
# Plot vertices
for i, z in enumerate(Z):
ax.plot(z.real, z.imag, 'bo', markersize=10)
ax.annotate(f'{i}', (z.real, z.imag), xytext=(5, 5), textcoords='offset points')
# The triangulation from our result
faces = [(0, 1, 6), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 5, 6), (1, 2, 6), (2, 3, 6)]
# Plot the triangles
for (a, b, c) in faces:
triangle = [Z[a], Z[b], Z[c], Z[a]]
xs = [z.real for z in triangle]
ys = [z.imag for z in triangle]
ax.plot(xs, ys, 'r-', alpha=0.5, linewidth=1)
# Fill triangle with light color
ax.fill(xs[:-1], ys[:-1], alpha=0.1, color='red')
ax.set_aspect('equal')
ax.grid(True, alpha=0.3)
ax.set_xlabel('Real')
ax.set_ylabel('Imaginary')
ax.set_title('7-Vertex Configuration (Delaunay Triangulation)')
# Add circle at infinity for reference
circle = plt.Circle((0, 0), 2, fill=False, linestyle='--', color='gray', alpha=0.5)
ax.add_patch(circle)
plt.tight_layout()
plt.savefig('7vertex_triangulation.png', dpi=150)
print("Saved visualization to 7vertex_triangulation.png")
# Check convexity
print("\nAnalyzing configuration:")
print(f"Number of faces: {len(faces)}")
print(f"All vertices used: {sorted(set(sum(faces, ())))}")
# The issue: This is the Delaunay triangulation in the plane,
# not the convex hull of the lifted points!
print("\nNote: This appears to be a planar Delaunay triangulation,")
print("not the convex hull of an ideal polyhedron in hyperbolic space.")
print("The missing face explains why Euler characteristic = 1 instead of 2.") |