Spaces:
Sleeping
Sleeping
File size: 11,781 Bytes
e0ef700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
#!/usr/bin/env python3
"""
Optimize volume for a large random configuration and analyze arithmetic angles.
"""
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent))
import numpy as np
import json
from datetime import datetime
from ideal_poly_volume_toolkit.geometry import ideal_poly_volume_via_delaunay
import torch
from scipy.spatial import Delaunay
from fractions import Fraction
def continued_fraction_convergents(x, max_terms=20):
"""Compute convergents of continued fraction expansion."""
convergents = []
a = []
remainder = x
for _ in range(max_terms):
floor_val = int(np.floor(remainder))
a.append(floor_val)
if abs(remainder - floor_val) < 1e-12:
break
remainder = 1.0 / (remainder - floor_val)
p_prev, p_curr = 0, 1
q_prev, q_curr = 1, 0
for ai in a:
p_next = ai * p_curr + p_prev
q_next = ai * q_curr + q_prev
convergents.append((p_next, q_next))
p_prev, p_curr = p_curr, p_next
q_prev, q_curr = q_curr, q_next
return convergents
def optimize_volume(vertices_complex, n_trials=20, max_steps=2000):
"""Optimize volume starting from initial configuration."""
best_volume = -np.inf
best_config = None
print(f"\nOptimizing with {n_trials} trials, {max_steps} steps each...")
for trial in range(n_trials):
# Start from initial configuration with small random perturbation
real_init = vertices_complex.real + np.random.randn(len(vertices_complex)) * 0.1
imag_init = vertices_complex.imag + np.random.randn(len(vertices_complex)) * 0.1
# Use parameter array directly (no complex numbers in torch optimization)
params = torch.tensor(np.concatenate([real_init, imag_init]),
dtype=torch.float64, requires_grad=True)
# Optimizer
optimizer = torch.optim.Adam([params], lr=0.05)
for step in range(max_steps):
optimizer.zero_grad()
# Extract real and imag from params
n_verts = len(real_init)
real_t = params[:n_verts]
imag_t = params[n_verts:]
# Compute volume using numpy (convert back temporarily)
with torch.no_grad():
vertices_np = real_t.numpy() + 1j * imag_t.numpy()
volume_np = ideal_poly_volume_via_delaunay(
torch.tensor(vertices_np, dtype=torch.complex128)
)
volume_np_val = volume_np.item() if isinstance(volume_np, torch.Tensor) else volume_np
# Now compute with grad for backward
vertices_torch = torch.complex(real_t, imag_t)
volume = ideal_poly_volume_via_delaunay(vertices_torch)
# Maximize volume (minimize negative volume)
if isinstance(volume, torch.Tensor):
loss = -volume
loss.backward()
optimizer.step()
vol_val = volume.item()
else:
# If returns float, use numerical gradient
vol_val = volume
break
if step % 500 == 0:
print(f" Trial {trial+1}/{n_trials}, Step {step}/{max_steps}, Volume: {vol_val:.6f}")
# Get final volume
with torch.no_grad():
real_final = params[:n_verts].numpy()
imag_final = params[n_verts:].numpy()
vertices_final = real_final + 1j * imag_final
final_vol = ideal_poly_volume_via_delaunay(
torch.tensor(vertices_final, dtype=torch.complex128)
)
final_volume = final_vol.item() if isinstance(final_vol, torch.Tensor) else final_vol
if final_volume > best_volume:
best_volume = final_volume
best_config = {
'vertices_real': real_final.tolist(),
'vertices_imag': imag_final.tolist(),
'volume': final_volume,
}
print(f" β
New best volume: {best_volume:.6f}")
return best_config
def analyze_dihedral_angles(vertices_complex):
"""Analyze dihedral angles and check for rational patterns."""
from ideal_poly_volume_toolkit.rivin_delaunay import check_delaunay_realizability, build_edge_adjacency
points = np.column_stack([vertices_complex.real, vertices_complex.imag])
# Compute Delaunay triangulation
tri = Delaunay(points)
triangulation = [tuple(sorted(simplex)) for simplex in tri.simplices]
triangulation = sorted(set(triangulation))
# Get angles from Rivin LP
result = check_delaunay_realizability(triangulation, verbose=False, strict=False)
if not result['realizable']:
print("ERROR: Configuration not realizable!")
return None
angles_scaled = result['angles']
angles_radians = angles_scaled * np.pi
n_triangles = len(triangulation)
angles_array = angles_radians.reshape((n_triangles, 3))
# Compute interior edge dihedral angles
edge_adjacency = build_edge_adjacency(triangulation)
dihedrals = []
for edge, opposite_corners in sorted(edge_adjacency.items()):
if len(opposite_corners) == 2:
angle1 = angles_array[opposite_corners[0][0], opposite_corners[0][1]]
angle2 = angles_array[opposite_corners[1][0], opposite_corners[1][1]]
dihedral = angle1 + angle2
normalized = dihedral / np.pi
# Find best rational approximation
convergents = continued_fraction_convergents(normalized)
if convergents:
best_p, best_q = convergents[-1]
error = abs(normalized - best_p / best_q)
dihedrals.append({
'edge': edge,
'angle_rad': float(dihedral),
'angle_deg': float(np.degrees(dihedral)),
'normalized': float(normalized),
'p': int(best_p),
'q': int(best_q),
'error': float(error),
})
return {
'n_triangles': n_triangles,
'n_interior_edges': len(dihedrals),
'dihedrals': dihedrals,
}
def main(n_vertices=89, n_trials=20, max_steps=2000):
"""Main optimization and analysis."""
print(f"βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print(f"LARGE RANDOM CONFIGURATION OPTIMIZATION")
print(f"βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print(f"\nNumber of vertices: {n_vertices}")
print(f"Optimization trials: {n_trials}")
print(f"Steps per trial: {max_steps}")
# Generate random points in unit disk
print(f"\nGenerating {n_vertices} random points in unit disk...")
np.random.seed(42) # For reproducibility
# Generate points in polar coordinates for better distribution
radii = np.sqrt(np.random.uniform(0, 1, n_vertices))
angles = np.random.uniform(0, 2*np.pi, n_vertices)
vertices_complex = radii * np.exp(1j * angles)
print(f"Initial configuration generated")
init_vol = ideal_poly_volume_via_delaunay(torch.tensor(vertices_complex, dtype=torch.complex128))
init_vol_val = init_vol.item() if isinstance(init_vol, torch.Tensor) else init_vol
print(f"Initial volume: {init_vol_val:.6f}")
# Optimize
best_config = optimize_volume(vertices_complex, n_trials=n_trials, max_steps=max_steps)
print(f"\n{'β'*63}")
print(f"OPTIMIZATION COMPLETE")
print(f"{'β'*63}")
print(f"Best volume: {best_config['volume']:.12f}")
# Analyze dihedral angles
print(f"\n{'β'*63}")
print(f"ANALYZING DIHEDRAL ANGLES")
print(f"{'β'*63}")
vertices_opt = np.array(best_config['vertices_real']) + 1j * np.array(best_config['vertices_imag'])
angle_analysis = analyze_dihedral_angles(vertices_opt)
if angle_analysis is None:
return
print(f"\nTriangles: {angle_analysis['n_triangles']}")
print(f"Interior edges: {angle_analysis['n_interior_edges']}")
# Find denominators with small error
max_denominator = 200
small_error_threshold = 1e-6
denominators = {}
for d in angle_analysis['dihedrals']:
if d['q'] <= max_denominator and d['error'] < small_error_threshold:
if d['q'] not in denominators:
denominators[d['q']] = 0
denominators[d['q']] += 1
print(f"\n{'β'*63}")
print(f"RATIONAL ANGLE DENOMINATORS (q β€ {max_denominator}, error < {small_error_threshold})")
print(f"{'β'*63}")
if denominators:
print(f"\n{'Denominator':>12} {'Count':>8} {'Relation to n':>20}")
print(f"{'-'*42}")
for q in sorted(denominators.keys()):
count = denominators[q]
relation = ""
if q == n_vertices - 2:
relation = f"= n-2"
elif q == n_vertices - 3:
relation = f"= n-3"
elif q == n_vertices - 1:
relation = f"= n-1"
elif q == n_vertices:
relation = f"= n"
print(f" q={q:>3} {count:7d} {relation:>20}")
# Check if ALL angles have small denominators
total_with_small_q = sum(denominators.values())
if total_with_small_q == angle_analysis['n_interior_edges']:
print(f"\nβ ALL {angle_analysis['n_interior_edges']} interior edges have rational angles with q β€ {max_denominator}!")
else:
print(f"\n {total_with_small_q}/{angle_analysis['n_interior_edges']} edges have rational angles")
else:
print(" No angles found with small denominators")
# Sample a few angles
print(f"\n{'β'*63}")
print(f"SAMPLE DIHEDRAL ANGLES (first 10)")
print(f"{'β'*63}")
print(f"{'Edge':>12} {'Degrees':>10} {'Rational':>12} {'Error':>12}")
print(f"{'-'*48}")
for i, d in enumerate(angle_analysis['dihedrals'][:10]):
if d['q'] > 1:
rational = f"{d['p']}Ο/{d['q']}"
else:
rational = f"{d['p']}Ο"
print(f" {str(d['edge']):>10} {d['angle_deg']:9.3f}Β° {rational:>12} {d['error']:11.2e}")
# Save results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = Path(f"results/data/{n_vertices}vertex_random_optimization_{timestamp}.json")
output_file.parent.mkdir(parents=True, exist_ok=True)
output_data = {
'metadata': {
'n_vertices': n_vertices,
'n_trials': n_trials,
'max_steps': max_steps,
'timestamp': timestamp,
},
'best': best_config,
'angle_analysis': {
'n_triangles': angle_analysis['n_triangles'],
'n_interior_edges': angle_analysis['n_interior_edges'],
'denominator_counts': {str(k): v for k, v in denominators.items()},
}
}
with open(output_file, 'w') as f:
json.dump(output_data, f, indent=2)
print(f"\nβ Results saved to: {output_file}")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Optimize large random configuration')
parser.add_argument('--vertices', type=int, default=89, help='Number of vertices')
parser.add_argument('--trials', type=int, default=20, help='Number of optimization trials')
parser.add_argument('--steps', type=int, default=2000, help='Steps per trial')
args = parser.parse_args()
main(n_vertices=args.vertices, n_trials=args.trials, max_steps=args.steps)
|