File size: 7,032 Bytes
e0ef700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
"""
Test hyperbolic volume optimization using Rivin's algorithm.

This script demonstrates:
1. Check that a triangulation is Delaunay realizable
2. Optimize the angle assignment to maximize hyperbolic volume
3. The optimization uses exact gradient and Hessian (diagonal!)
4. Rivin's theorem guarantees concavity, so there's a unique maximum
"""

import numpy as np
from scipy.spatial import Delaunay
import sys
sys.path.insert(0, '/home/igor/devel/ideal_poly_volume_toolkit')

from ideal_poly_volume_toolkit.rivin_delaunay import (
    check_delaunay_realizability,
    optimize_hyperbolic_volume,
    format_realizability_report,
)


def test_volume_optimization(n_points=20, seed=42):
    """
    Test volume optimization on a random Delaunay triangulation.

    Args:
        n_points: Number of random points
        seed: Random seed
    """
    np.random.seed(seed)

    print("="*70)
    print("HYPERBOLIC VOLUME OPTIMIZATION VIA RIVIN'S ALGORITHM")
    print("="*70)
    print()

    print(f"Step 1: Generate {n_points} random points and compute Delaunay triangulation")
    points = np.random.rand(n_points, 2)
    tri = Delaunay(points)
    triangles = [tuple(simplex) for simplex in tri.simplices]
    print(f"  ✓ Triangulation: {len(triangles)} triangles, {n_points} vertices")
    print()

    print("Step 2: Check Delaunay realizability and get initial angle assignment")
    result_realizable = check_delaunay_realizability(triangles, verbose=True)
    print()

    if not result_realizable['realizable']:
        print("✗ Triangulation is not realizable - cannot optimize volume")
        return

    print(format_realizability_report(result_realizable))
    print()

    print("Step 3: Optimize hyperbolic volume")
    print("  Using quasi-Newton method with:")
    print("    - Exact gradient: ∇Λ(θ) = -log(2sin(θ))")
    print("    - Exact Hessian: ∇²Λ(θ) = -cot(θ) (diagonal!)")
    print("    - Constraints: Rivin polytope (linear constraints)")
    print()

    result_opt = optimize_hyperbolic_volume(triangles, verbose=True)

    if not result_opt['success']:
        print(f"\n✗ Optimization failed: {result_opt['message']}")
        return

    print()
    print("="*70)
    print("OPTIMIZATION RESULTS")
    print("="*70)
    print(f"Success: ✓")
    print(f"Iterations: {result_opt['n_iterations']}")
    print(f"Optimal hyperbolic volume: {result_opt['volume']:.6f}")
    print()

    # Compare initial vs optimal angles
    initial_angles = result_realizable['angles_radians']
    optimal_angles = result_opt['angles']

    # Compute initial volume
    from ideal_poly_volume_toolkit.rivin_delaunay import lobachevsky_function
    initial_volume = np.sum([lobachevsky_function(theta) for theta in initial_angles.flatten()])

    print(f"Initial volume (from LP):     {initial_volume:.6f}")
    print(f"Optimal volume (optimized):   {result_opt['volume']:.6f}")
    print(f"Improvement:                  {result_opt['volume'] - initial_volume:.6f}")
    print(f"Relative improvement:         {100*(result_opt['volume'] - initial_volume)/abs(initial_volume):.2f}%")
    print()

    # Angle statistics
    print("Angle statistics (radians):")
    print(f"  Initial - min: {initial_angles.min():.4f}, max: {initial_angles.max():.4f}, mean: {initial_angles.mean():.4f}")
    print(f"  Optimal - min: {optimal_angles.min():.4f}, max: {optimal_angles.max():.4f}, mean: {optimal_angles.mean():.4f}")
    print()

    print("Angle statistics (degrees):")
    print(f"  Initial - min: {np.degrees(initial_angles.min()):.2f}°, max: {np.degrees(initial_angles.max()):.2f}°")
    print(f"  Optimal - min: {np.degrees(optimal_angles.min()):.2f}°, max: {np.degrees(optimal_angles.max()):.2f}°")
    print("="*70)

    return result_opt


def test_hexagon_optimization():
    """
    Test on a simple example: regular hexagon with center.
    """
    print("\n" + "="*70)
    print("SPECIAL CASE: Regular Hexagon Triangulated from Center")
    print("="*70)
    print()

    # Regular hexagon with center
    angles = np.linspace(0, 2*np.pi, 7)[:-1]
    points = np.column_stack([np.cos(angles), np.sin(angles)])
    center = np.array([[0.0, 0.0]])
    all_points = np.vstack([center, points])

    # Triangulate from center
    triangles = [(0, i+1, ((i+1) % 6) + 1) for i in range(6)]

    print("Configuration: 6 triangles, all sharing the center vertex")
    print()

    print("Step 1: Check realizability")
    result_realizable = check_delaunay_realizability(triangles, verbose=False)

    if not result_realizable['realizable']:
        print("✗ Not realizable")
        return

    print(f"  ✓ Realizable with min angle: {np.degrees(result_realizable['min_angle_radians']):.2f}°")
    print()

    print("Step 2: Optimize volume")
    result_opt = optimize_hyperbolic_volume(triangles, verbose=False)

    if not result_opt['success']:
        print(f"  ✗ Optimization failed")
        return

    from ideal_poly_volume_toolkit.rivin_delaunay import lobachevsky_function
    initial_volume = np.sum([lobachevsky_function(theta)
                            for theta in result_realizable['angles_radians'].flatten()])

    print(f"  ✓ Optimization successful")
    print(f"    Iterations: {result_opt['n_iterations']}")
    print(f"    Initial volume: {initial_volume:.6f}")
    print(f"    Optimal volume: {result_opt['volume']:.6f}")
    print(f"    Improvement: {100*(result_opt['volume']-initial_volume)/abs(initial_volume):.2f}%")
    print()

    # Check if angles are equal (by symmetry, they should be for optimal volume)
    optimal_angles = result_opt['angles']
    print("Optimal angle distribution:")
    print(f"  All angles: {np.degrees(optimal_angles.flatten())}")
    print(f"  Std dev: {np.degrees(optimal_angles.std()):.4f}°")
    print()

    if optimal_angles.std() < 0.01:
        print("  ✓ All angles are approximately equal (as expected by symmetry!)")
    else:
        print("  ⚠ Angles vary (unexpected for this symmetric configuration)")

    print("="*70)


def main():
    import argparse

    parser = argparse.ArgumentParser(
        description="Test hyperbolic volume optimization"
    )
    parser.add_argument(
        "--points",
        type=int,
        default=20,
        help="Number of random points (default: 20)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed (default: 42)",
    )
    parser.add_argument(
        "--example",
        choices=["random", "hexagon", "both"],
        default="random",
        help="Which example to run (default: random)",
    )

    args = parser.parse_args()

    print("\n" + "#"*70)
    print("# Testing: Hyperbolic Volume Optimization")
    print("#"*70 + "\n")

    if args.example in ["random", "both"]:
        test_volume_optimization(n_points=args.points, seed=args.seed)

    if args.example in ["hexagon", "both"]:
        test_hexagon_optimization()


if __name__ == "__main__":
    main()