File size: 11,963 Bytes
82a8f4b
 
 
 
1345aff
82a8f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82a8f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82a8f4b
 
 
 
 
 
 
32a2e80
 
 
 
 
 
 
 
 
 
 
 
 
 
82a8f4b
 
32a2e80
 
 
 
 
 
 
 
 
 
 
 
 
 
82a8f4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
from scipy.spatial import ConvexHull, Delaunay
import torch
import mpmath as mp
import cmath

def lift_to_sphere_with_inf(W: np.ndarray) -> np.ndarray:
    P = np.zeros((W.shape[0], 3), dtype=np.float64)
    is_inf = ~np.isfinite(W.real) | ~np.isfinite(W.imag)
    F = ~is_inf
    w = W[F]
    r2 = (w.real**2 + w.imag**2)
    denom = r2 + 1.0
    P[F, 0] = 2.0 * w.real / denom
    P[F, 1] = 2.0 * w.imag / denom
    P[F, 2] = (r2 - 1.0) / denom
    P[is_inf] = np.array([0.0, 0.0, 1.0])
    return P

def inverse_stereographic_from_sphere_pts(X: np.ndarray) -> np.ndarray:
    x, y, z = X[:,0], X[:,1], X[:,2]
    denom = (1.0 - z)
    return (x/denom) + 1j*(y/denom)

def hull_tris_projected_back(W: np.ndarray, index_inf: int = 0) -> list:
    P3 = lift_to_sphere_with_inf(W)
    hull = ConvexHull(P3)
    tris = []
    for f in hull.simplices:
        if index_inf in f:
            continue
        X = P3[np.asarray(f)]
        tri = tuple(inverse_stereographic_from_sphere_pts(X))
        tris.append(tri)
    return tris

def delaunay_triangulation_indices(z_finite: np.ndarray) -> np.ndarray:
    pts = np.column_stack([z_finite.real, z_finite.imag])
    tri = Delaunay(pts)
    return tri.simplices.astype(np.int64)

def _angles_for_triangle_torch(z1, z2, z3):
    def angle_at(a, b, c):
        u = torch.stack(((b-a).real, (b-a).imag), dim=-1)
        v = torch.stack(((c-a).real, (c-a).imag), dim=-1)
        dot = (u * v).sum(dim=-1)
        cross = u[...,0]*v[...,1] - u[...,1]*v[...,0]
        return torch.atan2(torch.abs(cross), dot)
    a1 = angle_at(z1, z2, z3)
    a2 = angle_at(z2, z3, z1)
    a3 = angle_at(z3, z1, z2)
    return a1, a2, a3

def _angles_for_triangle_np(z1, z2, z3):
    def angle_at(a, b, c):
        u = np.array([(b-a).real, (b-a).imag])
        v = np.array([(c-a).real, (c-a).imag])
        dot = (u*v).sum()
        cross = u[0]*v[1] - u[1]*v[0]
        return np.arctan2(abs(cross), dot)
    return angle_at(z1,z2,z3), angle_at(z2,z3,z1), angle_at(z3,z1,z2)

def _lob_value_series_torch(theta: torch.Tensor, n: int = 64) -> torch.Tensor:
    k = torch.arange(1, n+1, device=theta.device, dtype=theta.dtype)
    return 0.5 * torch.sum(torch.sin(2*k*theta)/(k*k), dim=0)

class _LobFn(torch.autograd.Function):
    @staticmethod
    def forward(ctx, theta, n: int = 64):
        ctx.save_for_backward(theta)
        return _lob_value_series_torch(theta, n)
    @staticmethod
    def backward(ctx, gout):
        (theta,) = ctx.saved_tensors
        return -gout * torch.log(2.0*torch.abs(torch.sin(theta))), None

def lob_fast(theta: torch.Tensor, n: int = 64) -> torch.Tensor:
    return _LobFn.apply(theta, n)

def lob_exact(theta: float, dps: int = 120) -> float:
    mp.mp.dps = dps
    return 0.5 * mp.clsin(2, 2*float(theta))


# ============================================================================
# Bloch-Wigner dilogarithm approach (faster and more accurate)
# ============================================================================

def bloch_wigner_mpmath(z: complex) -> float:
    """
    Compute Bloch-Wigner dilogarithm using mpmath.

    D(z) = Im(Li_2(z)) + arg(1-z) * log|z|

    This is exact and should be used for validation/testing.
    """
    return float(mp.im(mp.polylog(2, z)) + mp.arg(1 - z) * mp.log(abs(z)))


class _BlochWignerFn(torch.autograd.Function):
    """
    Custom autograd function for Bloch-Wigner dilogarithm.

    Forward: D(z) = Im(Li_2(z)) + arg(1-z) * log|z|
    Backward: Uses the derivative formula for the dilogarithm
    """

    @staticmethod
    def forward(ctx, z_real, z_imag):
        """
        Compute Bloch-Wigner dilogarithm.

        Args:
            z_real: Real part of z (torch tensor)
            z_imag: Imaginary part of z (torch tensor)

        Returns:
            D(z) as a real tensor
        """
        # Save for backward pass
        ctx.save_for_backward(z_real, z_imag)

        # Convert to numpy for mpmath computation
        z_real_np = z_real.detach().cpu().numpy()
        z_imag_np = z_imag.detach().cpu().numpy()

        # Handle scalar vs array
        is_scalar = z_real_np.shape == ()
        if is_scalar:
            z_complex = complex(float(z_real_np), float(z_imag_np))
            result = bloch_wigner_mpmath(z_complex)
        else:
            z_complex = z_real_np + 1j * z_imag_np
            result = np.array([bloch_wigner_mpmath(complex(z)) for z in z_complex.flat])
            result = result.reshape(z_real_np.shape)

        return torch.tensor(result, dtype=z_real.dtype, device=z_real.device)

    @staticmethod
    def backward(ctx, grad_output):
        """
        Compute gradient of Bloch-Wigner dilogarithm.

        The derivative is: dD/dz = -log(1-z) / z (complex derivative)
        We need to split this into real and imaginary parts.
        """
        z_real, z_imag = ctx.saved_tensors

        # Compute 1 - z
        one_minus_z_real = 1.0 - z_real
        one_minus_z_imag = -z_imag

        # Compute log(1-z)
        # log(a + bi) = log|a+bi| + i*arg(a+bi)
        abs_one_minus_z = torch.sqrt(one_minus_z_real**2 + one_minus_z_imag**2)
        log_abs = torch.log(abs_one_minus_z + 1e-10)  # Add epsilon for stability
        arg = torch.atan2(one_minus_z_imag, one_minus_z_real)

        log_real = log_abs
        log_imag = arg

        # Compute 1/z
        z_abs_sq = z_real**2 + z_imag**2 + 1e-10
        inv_z_real = z_real / z_abs_sq
        inv_z_imag = -z_imag / z_abs_sq

        # Compute -log(1-z) / z (complex multiplication)
        # (-log_real - i*log_imag) * (inv_z_real + i*inv_z_imag)
        result_real = -(log_real * inv_z_real - log_imag * inv_z_imag)
        result_imag = -(log_real * inv_z_imag + log_imag * inv_z_real)

        # The Bloch-Wigner is real-valued, so we take the imaginary part of dD/dz for the real gradient
        # This is a bit subtle: for f: C -> R, df/dx and df/dy come from Re(df/dz) and Im(df/dz)
        # But D is already real, so we use the Wirtinger derivatives
        grad_real = grad_output * result_real
        grad_imag = grad_output * result_imag

        return grad_real, grad_imag


def bloch_wigner_torch(z_real, z_imag):
    """
    Compute Bloch-Wigner dilogarithm with PyTorch autograd support.

    Args:
        z_real: Real part of z (torch tensor)
        z_imag: Imaginary part of z (torch tensor)

    Returns:
        D(z) as a torch tensor with gradient support
    """
    return _BlochWignerFn.apply(z_real, z_imag)


def cross_ratio_torch(z1_real, z1_imag, z2_real, z2_imag, z3_real, z3_imag, z4_real, z4_imag):
    """
    Compute cross ratio of four complex points in torch.

    CR(z1, z2, z3, z4) = (z1 - z3)(z2 - z4) / ((z1 - z4)(z2 - z3))

    Args:
        z*_real, z*_imag: Real and imaginary parts of the four points

    Returns:
        Real and imaginary parts of the cross ratio
    """
    # Compute z1 - z3
    num1_real = z1_real - z3_real
    num1_imag = z1_imag - z3_imag

    # Compute z2 - z4
    num2_real = z2_real - z4_real
    num2_imag = z2_imag - z4_imag

    # Compute (z1 - z3)(z2 - z4)
    num_real = num1_real * num2_real - num1_imag * num2_imag
    num_imag = num1_real * num2_imag + num1_imag * num2_real

    # Compute z1 - z4
    den1_real = z1_real - z4_real
    den1_imag = z1_imag - z4_imag

    # Compute z2 - z3
    den2_real = z2_real - z3_real
    den2_imag = z2_imag - z3_imag

    # Compute (z1 - z4)(z2 - z3)
    den_real = den1_real * den2_real - den1_imag * den2_imag
    den_imag = den1_real * den2_imag + den1_imag * den2_real

    # Compute num / den
    den_abs_sq = den_real**2 + den_imag**2 + 1e-10
    cr_real = (num_real * den_real + num_imag * den_imag) / den_abs_sq
    cr_imag = (num_imag * den_real - num_real * den_imag) / den_abs_sq

    return cr_real, cr_imag

def triangle_volume_from_points(z1, z2, z3, mode="fast", series_terms=64, dps=120):
    if mode == "fast":
        z1t = torch.tensor(z1, dtype=torch.complex128)
        z2t = torch.tensor(z2, dtype=torch.complex128)
        z3t = torch.tensor(z3, dtype=torch.complex128)
        a1,a2,a3 = _angles_for_triangle_torch(z1t,z2t,z3t)
        return (lob_fast(a1, series_terms) + lob_fast(a2, series_terms) + lob_fast(a3, series_terms)).item()
    else:
        a1,a2,a3 = _angles_for_triangle_np(z1,z2,z3)
        return float(lob_exact(a1, dps=dps) + lob_exact(a2, dps=dps) + lob_exact(a3, dps=dps))

def triangle_volume_from_points_torch(z1t, z2t, z3t, series_terms=64):
    """
    Pure-Torch triangle accumulator: angles → Λ → sum. Returns a real Tensor.
    """
    a1, a2, a3 = _angles_for_triangle_torch(z1t, z2t, z3t)  # float64 tensors
    return lob_fast(a1, series_terms) + lob_fast(a2, series_terms) + lob_fast(a3, series_terms)


def triangle_volume_bloch_wigner(z1t, z2t, z3t):
    """
    Compute volume of ideal tetrahedron using Bloch-Wigner dilogarithm.

    For a tetrahedron with vertices z1, z2, z3, ∞, the volume is:
    V = |D(CR(z1, z2, z3, ∞))|

    where D is the Bloch-Wigner dilogarithm and CR is the cross ratio.

    This is faster and more accurate than the Lobachevsky series approach.

    Args:
        z1t, z2t, z3t: Complex torch tensors for the three finite vertices

    Returns:
        Volume as a real torch tensor
    """
    # Extract real and imaginary parts
    z1_real = z1t.real
    z1_imag = z1t.imag
    z2_real = z2t.real
    z2_imag = z2t.imag
    z3_real = z3t.real
    z3_imag = z3t.imag

    # For infinity, we use the cross ratio formula with ∞ as the 4th point:
    # CR(z1, z2, z3, ∞) = (z1 - z3) / (z2 - z3)
    # This is a simplified version since (z - ∞) factors cancel

    diff13_real = z1_real - z3_real
    diff13_imag = z1_imag - z3_imag
    diff23_real = z2_real - z3_real
    diff23_imag = z2_imag - z3_imag

    # Compute (z1 - z3) / (z2 - z3)
    den_abs_sq = diff23_real**2 + diff23_imag**2 + 1e-10
    cr_real = (diff13_real * diff23_real + diff13_imag * diff23_imag) / den_abs_sq
    cr_imag = (diff13_imag * diff23_real - diff13_real * diff23_imag) / den_abs_sq

    # Compute Bloch-Wigner dilogarithm
    vol = bloch_wigner_torch(cr_real, cr_imag)

    # Return absolute value (volume is positive)
    return torch.abs(vol)

def ideal_poly_volume_via_hull_project_back(W, index_inf=0, mode="fast", dps=120, series_terms=64):
    tris = hull_tris_projected_back(W, index_inf=index_inf)
    total = 0.0
    for (z1, z2, z3) in tris:
        total += triangle_volume_from_points(z1, z2, z3, mode=mode, series_terms=series_terms, dps=dps)
    return total

def ideal_poly_volume_via_delaunay(z_finite_complex: np.ndarray, mode="fast", dps=120, series_terms=64, use_bloch_wigner=False):
    """
    Compute volume of ideal polyhedron using Delaunay triangulation.

    Args:
        z_finite_complex: Array of finite vertices (complex numbers)
        mode: "fast" (series) or "exact" (mpmath) - only used if use_bloch_wigner=False
        dps: Decimal precision for exact mode
        series_terms: Number of terms for fast mode
        use_bloch_wigner: If True, use Bloch-Wigner dilogarithm (most accurate)

    Returns:
        Total volume as float
    """
    idx_tris = delaunay_triangulation_indices(z_finite_complex)
    total = 0.0

    if use_bloch_wigner:
        # Use Bloch-Wigner dilogarithm (most accurate and fast)
        for (i,j,k) in idx_tris:
            z1 = torch.tensor(z_finite_complex[i], dtype=torch.complex128)
            z2 = torch.tensor(z_finite_complex[j], dtype=torch.complex128)
            z3 = torch.tensor(z_finite_complex[k], dtype=torch.complex128)
            total += triangle_volume_bloch_wigner(z1, z2, z3).item()
    else:
        # Use Lobachevsky function (series or exact)
        for (i,j,k) in idx_tris:
            z1, z2, z3 = z_finite_complex[i], z_finite_complex[j], z_finite_complex[k]
            total += triangle_volume_from_points(z1, z2, z3, mode=mode, series_terms=series_terms, dps=dps)

    return total