Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,963 Bytes
82a8f4b 1345aff 82a8f4b 1345aff 82a8f4b 1345aff 82a8f4b 32a2e80 82a8f4b 32a2e80 82a8f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import numpy as np
from scipy.spatial import ConvexHull, Delaunay
import torch
import mpmath as mp
import cmath
def lift_to_sphere_with_inf(W: np.ndarray) -> np.ndarray:
P = np.zeros((W.shape[0], 3), dtype=np.float64)
is_inf = ~np.isfinite(W.real) | ~np.isfinite(W.imag)
F = ~is_inf
w = W[F]
r2 = (w.real**2 + w.imag**2)
denom = r2 + 1.0
P[F, 0] = 2.0 * w.real / denom
P[F, 1] = 2.0 * w.imag / denom
P[F, 2] = (r2 - 1.0) / denom
P[is_inf] = np.array([0.0, 0.0, 1.0])
return P
def inverse_stereographic_from_sphere_pts(X: np.ndarray) -> np.ndarray:
x, y, z = X[:,0], X[:,1], X[:,2]
denom = (1.0 - z)
return (x/denom) + 1j*(y/denom)
def hull_tris_projected_back(W: np.ndarray, index_inf: int = 0) -> list:
P3 = lift_to_sphere_with_inf(W)
hull = ConvexHull(P3)
tris = []
for f in hull.simplices:
if index_inf in f:
continue
X = P3[np.asarray(f)]
tri = tuple(inverse_stereographic_from_sphere_pts(X))
tris.append(tri)
return tris
def delaunay_triangulation_indices(z_finite: np.ndarray) -> np.ndarray:
pts = np.column_stack([z_finite.real, z_finite.imag])
tri = Delaunay(pts)
return tri.simplices.astype(np.int64)
def _angles_for_triangle_torch(z1, z2, z3):
def angle_at(a, b, c):
u = torch.stack(((b-a).real, (b-a).imag), dim=-1)
v = torch.stack(((c-a).real, (c-a).imag), dim=-1)
dot = (u * v).sum(dim=-1)
cross = u[...,0]*v[...,1] - u[...,1]*v[...,0]
return torch.atan2(torch.abs(cross), dot)
a1 = angle_at(z1, z2, z3)
a2 = angle_at(z2, z3, z1)
a3 = angle_at(z3, z1, z2)
return a1, a2, a3
def _angles_for_triangle_np(z1, z2, z3):
def angle_at(a, b, c):
u = np.array([(b-a).real, (b-a).imag])
v = np.array([(c-a).real, (c-a).imag])
dot = (u*v).sum()
cross = u[0]*v[1] - u[1]*v[0]
return np.arctan2(abs(cross), dot)
return angle_at(z1,z2,z3), angle_at(z2,z3,z1), angle_at(z3,z1,z2)
def _lob_value_series_torch(theta: torch.Tensor, n: int = 64) -> torch.Tensor:
k = torch.arange(1, n+1, device=theta.device, dtype=theta.dtype)
return 0.5 * torch.sum(torch.sin(2*k*theta)/(k*k), dim=0)
class _LobFn(torch.autograd.Function):
@staticmethod
def forward(ctx, theta, n: int = 64):
ctx.save_for_backward(theta)
return _lob_value_series_torch(theta, n)
@staticmethod
def backward(ctx, gout):
(theta,) = ctx.saved_tensors
return -gout * torch.log(2.0*torch.abs(torch.sin(theta))), None
def lob_fast(theta: torch.Tensor, n: int = 64) -> torch.Tensor:
return _LobFn.apply(theta, n)
def lob_exact(theta: float, dps: int = 120) -> float:
mp.mp.dps = dps
return 0.5 * mp.clsin(2, 2*float(theta))
# ============================================================================
# Bloch-Wigner dilogarithm approach (faster and more accurate)
# ============================================================================
def bloch_wigner_mpmath(z: complex) -> float:
"""
Compute Bloch-Wigner dilogarithm using mpmath.
D(z) = Im(Li_2(z)) + arg(1-z) * log|z|
This is exact and should be used for validation/testing.
"""
return float(mp.im(mp.polylog(2, z)) + mp.arg(1 - z) * mp.log(abs(z)))
class _BlochWignerFn(torch.autograd.Function):
"""
Custom autograd function for Bloch-Wigner dilogarithm.
Forward: D(z) = Im(Li_2(z)) + arg(1-z) * log|z|
Backward: Uses the derivative formula for the dilogarithm
"""
@staticmethod
def forward(ctx, z_real, z_imag):
"""
Compute Bloch-Wigner dilogarithm.
Args:
z_real: Real part of z (torch tensor)
z_imag: Imaginary part of z (torch tensor)
Returns:
D(z) as a real tensor
"""
# Save for backward pass
ctx.save_for_backward(z_real, z_imag)
# Convert to numpy for mpmath computation
z_real_np = z_real.detach().cpu().numpy()
z_imag_np = z_imag.detach().cpu().numpy()
# Handle scalar vs array
is_scalar = z_real_np.shape == ()
if is_scalar:
z_complex = complex(float(z_real_np), float(z_imag_np))
result = bloch_wigner_mpmath(z_complex)
else:
z_complex = z_real_np + 1j * z_imag_np
result = np.array([bloch_wigner_mpmath(complex(z)) for z in z_complex.flat])
result = result.reshape(z_real_np.shape)
return torch.tensor(result, dtype=z_real.dtype, device=z_real.device)
@staticmethod
def backward(ctx, grad_output):
"""
Compute gradient of Bloch-Wigner dilogarithm.
The derivative is: dD/dz = -log(1-z) / z (complex derivative)
We need to split this into real and imaginary parts.
"""
z_real, z_imag = ctx.saved_tensors
# Compute 1 - z
one_minus_z_real = 1.0 - z_real
one_minus_z_imag = -z_imag
# Compute log(1-z)
# log(a + bi) = log|a+bi| + i*arg(a+bi)
abs_one_minus_z = torch.sqrt(one_minus_z_real**2 + one_minus_z_imag**2)
log_abs = torch.log(abs_one_minus_z + 1e-10) # Add epsilon for stability
arg = torch.atan2(one_minus_z_imag, one_minus_z_real)
log_real = log_abs
log_imag = arg
# Compute 1/z
z_abs_sq = z_real**2 + z_imag**2 + 1e-10
inv_z_real = z_real / z_abs_sq
inv_z_imag = -z_imag / z_abs_sq
# Compute -log(1-z) / z (complex multiplication)
# (-log_real - i*log_imag) * (inv_z_real + i*inv_z_imag)
result_real = -(log_real * inv_z_real - log_imag * inv_z_imag)
result_imag = -(log_real * inv_z_imag + log_imag * inv_z_real)
# The Bloch-Wigner is real-valued, so we take the imaginary part of dD/dz for the real gradient
# This is a bit subtle: for f: C -> R, df/dx and df/dy come from Re(df/dz) and Im(df/dz)
# But D is already real, so we use the Wirtinger derivatives
grad_real = grad_output * result_real
grad_imag = grad_output * result_imag
return grad_real, grad_imag
def bloch_wigner_torch(z_real, z_imag):
"""
Compute Bloch-Wigner dilogarithm with PyTorch autograd support.
Args:
z_real: Real part of z (torch tensor)
z_imag: Imaginary part of z (torch tensor)
Returns:
D(z) as a torch tensor with gradient support
"""
return _BlochWignerFn.apply(z_real, z_imag)
def cross_ratio_torch(z1_real, z1_imag, z2_real, z2_imag, z3_real, z3_imag, z4_real, z4_imag):
"""
Compute cross ratio of four complex points in torch.
CR(z1, z2, z3, z4) = (z1 - z3)(z2 - z4) / ((z1 - z4)(z2 - z3))
Args:
z*_real, z*_imag: Real and imaginary parts of the four points
Returns:
Real and imaginary parts of the cross ratio
"""
# Compute z1 - z3
num1_real = z1_real - z3_real
num1_imag = z1_imag - z3_imag
# Compute z2 - z4
num2_real = z2_real - z4_real
num2_imag = z2_imag - z4_imag
# Compute (z1 - z3)(z2 - z4)
num_real = num1_real * num2_real - num1_imag * num2_imag
num_imag = num1_real * num2_imag + num1_imag * num2_real
# Compute z1 - z4
den1_real = z1_real - z4_real
den1_imag = z1_imag - z4_imag
# Compute z2 - z3
den2_real = z2_real - z3_real
den2_imag = z2_imag - z3_imag
# Compute (z1 - z4)(z2 - z3)
den_real = den1_real * den2_real - den1_imag * den2_imag
den_imag = den1_real * den2_imag + den1_imag * den2_real
# Compute num / den
den_abs_sq = den_real**2 + den_imag**2 + 1e-10
cr_real = (num_real * den_real + num_imag * den_imag) / den_abs_sq
cr_imag = (num_imag * den_real - num_real * den_imag) / den_abs_sq
return cr_real, cr_imag
def triangle_volume_from_points(z1, z2, z3, mode="fast", series_terms=64, dps=120):
if mode == "fast":
z1t = torch.tensor(z1, dtype=torch.complex128)
z2t = torch.tensor(z2, dtype=torch.complex128)
z3t = torch.tensor(z3, dtype=torch.complex128)
a1,a2,a3 = _angles_for_triangle_torch(z1t,z2t,z3t)
return (lob_fast(a1, series_terms) + lob_fast(a2, series_terms) + lob_fast(a3, series_terms)).item()
else:
a1,a2,a3 = _angles_for_triangle_np(z1,z2,z3)
return float(lob_exact(a1, dps=dps) + lob_exact(a2, dps=dps) + lob_exact(a3, dps=dps))
def triangle_volume_from_points_torch(z1t, z2t, z3t, series_terms=64):
"""
Pure-Torch triangle accumulator: angles → Λ → sum. Returns a real Tensor.
"""
a1, a2, a3 = _angles_for_triangle_torch(z1t, z2t, z3t) # float64 tensors
return lob_fast(a1, series_terms) + lob_fast(a2, series_terms) + lob_fast(a3, series_terms)
def triangle_volume_bloch_wigner(z1t, z2t, z3t):
"""
Compute volume of ideal tetrahedron using Bloch-Wigner dilogarithm.
For a tetrahedron with vertices z1, z2, z3, ∞, the volume is:
V = |D(CR(z1, z2, z3, ∞))|
where D is the Bloch-Wigner dilogarithm and CR is the cross ratio.
This is faster and more accurate than the Lobachevsky series approach.
Args:
z1t, z2t, z3t: Complex torch tensors for the three finite vertices
Returns:
Volume as a real torch tensor
"""
# Extract real and imaginary parts
z1_real = z1t.real
z1_imag = z1t.imag
z2_real = z2t.real
z2_imag = z2t.imag
z3_real = z3t.real
z3_imag = z3t.imag
# For infinity, we use the cross ratio formula with ∞ as the 4th point:
# CR(z1, z2, z3, ∞) = (z1 - z3) / (z2 - z3)
# This is a simplified version since (z - ∞) factors cancel
diff13_real = z1_real - z3_real
diff13_imag = z1_imag - z3_imag
diff23_real = z2_real - z3_real
diff23_imag = z2_imag - z3_imag
# Compute (z1 - z3) / (z2 - z3)
den_abs_sq = diff23_real**2 + diff23_imag**2 + 1e-10
cr_real = (diff13_real * diff23_real + diff13_imag * diff23_imag) / den_abs_sq
cr_imag = (diff13_imag * diff23_real - diff13_real * diff23_imag) / den_abs_sq
# Compute Bloch-Wigner dilogarithm
vol = bloch_wigner_torch(cr_real, cr_imag)
# Return absolute value (volume is positive)
return torch.abs(vol)
def ideal_poly_volume_via_hull_project_back(W, index_inf=0, mode="fast", dps=120, series_terms=64):
tris = hull_tris_projected_back(W, index_inf=index_inf)
total = 0.0
for (z1, z2, z3) in tris:
total += triangle_volume_from_points(z1, z2, z3, mode=mode, series_terms=series_terms, dps=dps)
return total
def ideal_poly_volume_via_delaunay(z_finite_complex: np.ndarray, mode="fast", dps=120, series_terms=64, use_bloch_wigner=False):
"""
Compute volume of ideal polyhedron using Delaunay triangulation.
Args:
z_finite_complex: Array of finite vertices (complex numbers)
mode: "fast" (series) or "exact" (mpmath) - only used if use_bloch_wigner=False
dps: Decimal precision for exact mode
series_terms: Number of terms for fast mode
use_bloch_wigner: If True, use Bloch-Wigner dilogarithm (most accurate)
Returns:
Total volume as float
"""
idx_tris = delaunay_triangulation_indices(z_finite_complex)
total = 0.0
if use_bloch_wigner:
# Use Bloch-Wigner dilogarithm (most accurate and fast)
for (i,j,k) in idx_tris:
z1 = torch.tensor(z_finite_complex[i], dtype=torch.complex128)
z2 = torch.tensor(z_finite_complex[j], dtype=torch.complex128)
z3 = torch.tensor(z_finite_complex[k], dtype=torch.complex128)
total += triangle_volume_bloch_wigner(z1, z2, z3).item()
else:
# Use Lobachevsky function (series or exact)
for (i,j,k) in idx_tris:
z1, z2, z3 = z_finite_complex[i], z_finite_complex[j], z_finite_complex[k]
total += triangle_volume_from_points(z1, z2, z3, mode=mode, series_terms=series_terms, dps=dps)
return total
|