Spaces:
Sleeping
Sleeping
File size: 11,446 Bytes
d7d27f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
"""
3D Visualization utilities for ideal polyhedra.
Supports:
- Poincaré ball model visualization
- Sphere projection with subdivision
- Interactive plots using plotly
"""
import numpy as np
import plotly.graph_objects as go
from scipy.spatial import ConvexHull
def lift_to_sphere_with_inf(W: np.ndarray) -> np.ndarray:
"""
Lift complex points to sphere via stereographic projection.
Args:
W: Complex array of points
Returns:
N x 3 array of points on unit sphere
"""
P = np.zeros((W.shape[0], 3), dtype=np.float64)
is_inf = ~np.isfinite(W.real) | ~np.isfinite(W.imag)
F = ~is_inf
w = W[F]
r2 = (w.real**2 + w.imag**2)
denom = r2 + 1.0
P[F, 0] = 2.0 * w.real / denom
P[F, 1] = 2.0 * w.imag / denom
P[F, 2] = (r2 - 1.0) / denom
P[is_inf] = np.array([0.0, 0.0, 1.0])
return P
def subdivide_triangle_euclidean(v1, v2, v3, depth=1):
"""
Recursively subdivide a triangle using Euclidean (straight line) midpoints.
This is used for subdividing in the Klein model (unit ball with Euclidean geometry).
Args:
v1, v2, v3: Triangle vertices (3D points in the ball)
depth: Number of subdivision levels
Returns:
List of subdivided triangular faces
"""
if depth == 0:
return [np.array([v1, v2, v3])]
# Compute Euclidean midpoints (straight lines in Klein model)
m12 = (v1 + v2) / 2.0
m23 = (v2 + v3) / 2.0
m31 = (v3 + v1) / 2.0
# Recursively subdivide 4 new triangles
triangles = []
triangles.extend(subdivide_triangle_euclidean(v1, m12, m31, depth - 1))
triangles.extend(subdivide_triangle_euclidean(v2, m23, m12, depth - 1))
triangles.extend(subdivide_triangle_euclidean(v3, m31, m23, depth - 1))
triangles.extend(subdivide_triangle_euclidean(m12, m23, m31, depth - 1))
return triangles
def klein_to_poincare(K: np.ndarray) -> np.ndarray:
"""
Map Klein ball model to Poincaré ball model.
The Klein model uses the unit ball with Euclidean (straight line) geodesics.
The Poincaré model uses the same ball with hyperbolic (curved) geodesics.
Formula: If k is a point in Klein ball with |k| < 1, then
p = k / (1 + sqrt(1 - |k|^2))
Args:
K: N x 3 array of points in Klein ball
Returns:
N x 3 array of points in Poincaré ball
"""
r_squared = np.sum(K**2, axis=1)
# Clip to avoid numerical issues near boundary
r_squared = np.clip(r_squared, 0, 0.9999)
# Klein to Poincaré transformation
denom = 1.0 + np.sqrt(1.0 - r_squared)
result = K / denom[:, np.newaxis]
return result
def create_polyhedron_mesh(vertices_complex, subdivisions=2):
"""
Create a subdivided mesh for visualization.
Algorithm:
1. Lift to sphere (gives Klein model in the ball)
2. Get convex hull faces
3. Subdivide each face using Euclidean midpoints (Klein model)
4. Map subdivided vertices Klein → Poincaré
Args:
vertices_complex: Complex array of vertices
subdivisions: Number of subdivision levels
Returns:
dict with 'klein' and 'poincare' meshes
"""
# Step 1: Lift to sphere (this gives us the Klein model in the ball)
klein_vertices = lift_to_sphere_with_inf(vertices_complex)
# Step 2: Compute convex hull (this is the Klein model of the polyhedron)
hull = ConvexHull(klein_vertices)
# Step 3 & 4: Subdivide each face in Klein, then map to Poincaré
subdivided_triangles_klein = []
subdivided_triangles_poincare = []
for simplex in hull.simplices:
v1, v2, v3 = klein_vertices[simplex]
# Subdivide in Klein model (Euclidean straight-line subdivision)
sub_tris_klein = subdivide_triangle_euclidean(v1, v2, v3, depth=subdivisions)
subdivided_triangles_klein.extend(sub_tris_klein)
# Map each subdivided triangle to Poincaré ball
for tri_klein in sub_tris_klein:
tri_poincare = klein_to_poincare(tri_klein)
subdivided_triangles_poincare.append(tri_poincare)
return {
'klein': {
'triangles': subdivided_triangles_klein,
'vertices': klein_vertices,
'original_faces': hull.simplices
},
'poincare': {
'triangles': subdivided_triangles_poincare,
'vertices': klein_to_poincare(klein_vertices),
'original_faces': hull.simplices
}
}
def plot_polyhedron_klein(vertices_complex, subdivisions=2, title="Ideal Polyhedron (Klein Model)"):
"""
Create interactive 3D plot of polyhedron in Klein ball model.
Args:
vertices_complex: Complex array of vertices
subdivisions: Number of subdivision levels
title: Plot title
Returns:
plotly Figure object
"""
mesh = create_polyhedron_mesh(vertices_complex, subdivisions)
triangles = mesh['klein']['triangles']
# Collect all vertices and triangle indices for Mesh3d
vertices_list = []
indices_i, indices_j, indices_k = [], [], []
vertex_map = {}
for tri in triangles:
tri_indices = []
for i in range(3):
vertex_tuple = tuple(tri[i])
if vertex_tuple not in vertex_map:
vertex_map[vertex_tuple] = len(vertices_list)
vertices_list.append(tri[i])
tri_indices.append(vertex_map[vertex_tuple])
# Add triangle indices
indices_i.append(tri_indices[0])
indices_j.append(tri_indices[1])
indices_k.append(tri_indices[2])
vertices_array = np.array(vertices_list)
# Create figure
fig = go.Figure()
# Add polyhedron as a mesh surface
fig.add_trace(go.Mesh3d(
x=vertices_array[:, 0],
y=vertices_array[:, 1],
z=vertices_array[:, 2],
i=indices_i,
j=indices_j,
k=indices_k,
color='lightblue',
opacity=0.7,
flatshading=False,
name='Polyhedron',
hoverinfo='skip'
))
# Add vertices
vertices = mesh['klein']['vertices']
fig.add_trace(go.Scatter3d(
x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2],
mode='markers',
marker=dict(size=8, color='red'),
name='Vertices',
hovertext=[f'Vertex {i}' for i in range(len(vertices))]
))
# Add transparent ball for reference
u = np.linspace(0, 2 * np.pi, 30)
v = np.linspace(0, np.pi, 20)
x_ball = np.outer(np.cos(u), np.sin(v))
y_ball = np.outer(np.sin(u), np.sin(v))
z_ball = np.outer(np.ones(np.size(u)), np.cos(v))
fig.add_trace(go.Surface(
x=x_ball, y=y_ball, z=z_ball,
opacity=0.1,
colorscale=[[0, 'lightgray'], [1, 'lightgray']],
showscale=False,
name='Unit Ball',
hoverinfo='skip'
))
# Layout
fig.update_layout(
title=title,
scene=dict(
xaxis=dict(range=[-1.2, 1.2], title='X'),
yaxis=dict(range=[-1.2, 1.2], title='Y'),
zaxis=dict(range=[-1.2, 1.2], title='Z'),
aspectmode='cube'
),
showlegend=True,
width=800,
height=800
)
return fig
def plot_polyhedron_poincare(vertices_complex, subdivisions=2, title="Ideal Polyhedron (Poincaré Ball)"):
"""
Create interactive 3D plot of polyhedron in Poincaré ball model.
Args:
vertices_complex: Complex array of vertices
subdivisions: Number of subdivision levels
title: Plot title
Returns:
plotly Figure object
"""
mesh = create_polyhedron_mesh(vertices_complex, subdivisions)
triangles = mesh['poincare']['triangles']
# Collect all vertices and triangle indices for Mesh3d
vertices_list = []
indices_i, indices_j, indices_k = [], [], []
vertex_map = {}
for tri in triangles:
tri_indices = []
for i in range(3):
vertex_tuple = tuple(tri[i])
if vertex_tuple not in vertex_map:
vertex_map[vertex_tuple] = len(vertices_list)
vertices_list.append(tri[i])
tri_indices.append(vertex_map[vertex_tuple])
# Add triangle indices
indices_i.append(tri_indices[0])
indices_j.append(tri_indices[1])
indices_k.append(tri_indices[2])
vertices_array = np.array(vertices_list)
# Create figure
fig = go.Figure()
# Add polyhedron as a mesh surface
fig.add_trace(go.Mesh3d(
x=vertices_array[:, 0],
y=vertices_array[:, 1],
z=vertices_array[:, 2],
i=indices_i,
j=indices_j,
k=indices_k,
color='lightblue',
opacity=0.7,
flatshading=False,
name='Polyhedron',
hoverinfo='skip'
))
# Add vertices
vertices = mesh['poincare']['vertices']
fig.add_trace(go.Scatter3d(
x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2],
mode='markers',
marker=dict(size=8, color='red'),
name='Vertices',
hovertext=[f'Vertex {i}' for i in range(len(vertices))]
))
# Add unit sphere boundary
u = np.linspace(0, 2 * np.pi, 30)
v = np.linspace(0, np.pi, 20)
x_sphere = np.outer(np.cos(u), np.sin(v))
y_sphere = np.outer(np.sin(u), np.sin(v))
z_sphere = np.outer(np.ones(np.size(u)), np.cos(v))
fig.add_trace(go.Surface(
x=x_sphere, y=y_sphere, z=z_sphere,
opacity=0.1,
colorscale=[[0, 'lightgray'], [1, 'lightgray']],
showscale=False,
name='Unit Ball',
hoverinfo='skip'
))
# Layout
fig.update_layout(
title=title,
scene=dict(
xaxis=dict(range=[-1.2, 1.2], title='X'),
yaxis=dict(range=[-1.2, 1.2], title='Y'),
zaxis=dict(range=[-1.2, 1.2], title='Z'),
aspectmode='cube'
),
showlegend=True,
width=800,
height=800
)
return fig
def plot_delaunay_2d(vertices_complex, triangulation_indices, title="Delaunay Triangulation"):
"""
Create 2D plot of Delaunay triangulation in complex plane.
Args:
vertices_complex: Complex array of vertices
triangulation_indices: Array of triangle indices
title: Plot title
Returns:
plotly Figure object
"""
fig = go.Figure()
# Plot triangulation edges
for tri in triangulation_indices:
i, j, k = tri
vertices_tri = vertices_complex[[i, j, k, i]] # Close the triangle
fig.add_trace(go.Scatter(
x=vertices_tri.real,
y=vertices_tri.imag,
mode='lines',
line=dict(color='blue', width=1),
showlegend=False,
hoverinfo='skip'
))
# Plot vertices
fig.add_trace(go.Scatter(
x=vertices_complex.real,
y=vertices_complex.imag,
mode='markers+text',
marker=dict(size=10, color='red'),
text=[f'{i}' for i in range(len(vertices_complex))],
textposition='top center',
name='Vertices',
hovertext=[f'Vertex {i}: {z:.3f}' for i, z in enumerate(vertices_complex)]
))
# Layout
fig.update_layout(
title=title,
xaxis_title='Real',
yaxis_title='Imaginary',
width=700,
height=700,
showlegend=True,
hovermode='closest'
)
fig.update_xaxes(scaleanchor="y", scaleratio=1)
return fig
|