Spaces:
Sleeping
Sleeping
File size: 11,378 Bytes
8750b11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""
Self-contained module for checking if ideal polyhedron volume exceeds threshold.
Given complex vertices (including 0, 1, β, and k other points), determines
whether the volume of the associated ideal hyperbolic polyhedron is greater
than a specified threshold.
This module is completely self-contained and does not depend on other files
in the toolkit.
Usage:
from ideal_poly_volume_toolkit.volume_threshold import volume_exceeds_threshold
vertices = [0+0j, 1+0j, 0.5+0.5j] # 0, 1, β implicit
result = volume_exceeds_threshold(vertices, threshold=1.0)
# Returns: True if volume > threshold, False otherwise
"""
import numpy as np
from scipy.spatial import ConvexHull, Delaunay
# ============================================================================
# Stereographic projection utilities
# ============================================================================
def lift_to_sphere_with_inf(W: np.ndarray) -> np.ndarray:
"""
Lift complex points to the unit sphere via inverse stereographic projection.
Maps C βͺ {β} β SΒ² where:
- Finite points w β (2Re(w)/(|w|Β²+1), 2Im(w)/(|w|Β²+1), (|w|Β²-1)/(|w|Β²+1))
- β β (0, 0, 1) (north pole)
Args:
W: Complex numpy array of vertices
Returns:
N x 3 array of points on unit sphere
"""
P = np.zeros((W.shape[0], 3), dtype=np.float64)
is_inf = ~np.isfinite(W.real) | ~np.isfinite(W.imag)
F = ~is_inf
w = W[F]
r2 = (w.real**2 + w.imag**2)
denom = r2 + 1.0
P[F, 0] = 2.0 * w.real / denom
P[F, 1] = 2.0 * w.imag / denom
P[F, 2] = (r2 - 1.0) / denom
P[is_inf] = np.array([0.0, 0.0, 1.0])
return P
def inverse_stereographic_from_sphere_pts(X: np.ndarray) -> np.ndarray:
"""
Project points from sphere back to complex plane via stereographic projection.
Maps SΒ² β C via w = (x + iy)/(1 - z)
Args:
X: N x 3 array of points on sphere
Returns:
Complex numpy array
"""
x, y, z = X[:, 0], X[:, 1], X[:, 2]
denom = (1.0 - z)
return (x / denom) + 1j * (y / denom)
# ============================================================================
# Triangulation methods
# ============================================================================
def hull_tris_projected_back(W: np.ndarray, index_inf: int = 0) -> list:
"""
Compute triangulation by lifting to sphere, taking convex hull, projecting back.
This handles vertices including β by working on the sphere where all points
are finite. Triangles containing β are excluded from the result.
Args:
W: Complex array of all vertices (including β)
index_inf: Index of the vertex at infinity
Returns:
List of triangles, each a tuple of 3 complex numbers
"""
P3 = lift_to_sphere_with_inf(W)
hull = ConvexHull(P3)
tris = []
for f in hull.simplices:
if index_inf in f:
continue
X = P3[np.asarray(f)]
tri = tuple(inverse_stereographic_from_sphere_pts(X))
tris.append(tri)
return tris
def delaunay_triangulation_indices(z_finite: np.ndarray) -> np.ndarray:
"""
Compute Delaunay triangulation of finite complex points.
Args:
z_finite: Complex array of finite vertices (no β)
Returns:
M x 3 array of triangle vertex indices
"""
pts = np.column_stack([z_finite.real, z_finite.imag])
tri = Delaunay(pts)
return tri.simplices.astype(np.int64)
# ============================================================================
# Lobachevsky function (Ξ) and triangle volume
# ============================================================================
def _lob_value_series(theta: float, n: int = 64) -> float:
"""
Compute Lobachevsky function Ξ(ΞΈ) via series expansion.
Ξ(ΞΈ) = -β«β^ΞΈ log|2sin(t)| dt = (1/2) Ξ£βββ^β sin(2kΞΈ)/kΒ²
Args:
theta: Angle in radians
n: Number of terms in series (default 64 for good accuracy)
Returns:
Ξ(ΞΈ) value
"""
total = 0.0
for k in range(1, n + 1):
total += np.sin(2 * k * theta) / (k * k)
return 0.5 * total
def _angles_for_triangle(z1, z2, z3):
"""
Compute the three interior angles of a Euclidean triangle.
Args:
z1, z2, z3: Complex coordinates of triangle vertices
Returns:
Tuple of three angles (a1, a2, a3) in radians
"""
def angle_at(a, b, c):
u = np.array([(b - a).real, (b - a).imag])
v = np.array([(c - a).real, (c - a).imag])
dot = (u * v).sum()
cross = u[0] * v[1] - u[1] * v[0]
return np.arctan2(abs(cross), dot)
return (angle_at(z1, z2, z3),
angle_at(z2, z3, z1),
angle_at(z3, z1, z2))
def triangle_volume(z1, z2, z3, series_terms=64):
"""
Compute volume of ideal hyperbolic tetrahedron from base triangle.
For a triangle with vertices z1, z2, z3 in the complex plane, the volume
of the ideal tetrahedron with base vertices at z1, z2, z3 and apex at β
is given by the sum of Lobachevsky functions at the three interior angles:
V = Ξ(Ξ±β) + Ξ(Ξ±β) + Ξ(Ξ±β)
Args:
z1, z2, z3: Complex coordinates of triangle vertices
series_terms: Number of terms in Lobachevsky series (default 64)
Returns:
Volume of the ideal tetrahedron
"""
a1, a2, a3 = _angles_for_triangle(z1, z2, z3)
return (_lob_value_series(a1, series_terms) +
_lob_value_series(a2, series_terms) +
_lob_value_series(a3, series_terms))
# ============================================================================
# Volume computation strategies
# ============================================================================
def compute_volume_hull_method(vertices: np.ndarray, index_inf: int = None) -> float:
"""
Compute polyhedron volume using convex hull method.
This method:
1. Lifts all vertices to sphere (including β β north pole)
2. Computes convex hull on sphere
3. Projects triangles back to complex plane (excluding those containing β)
4. Sums volumes of all triangles
Args:
vertices: Complex array of all vertices
index_inf: Index of vertex at infinity (if None, searches for inf)
Returns:
Total volume
"""
if index_inf is None:
# Find infinity vertex
is_inf = ~np.isfinite(vertices.real) | ~np.isfinite(vertices.imag)
if not np.any(is_inf):
raise ValueError("No vertex at infinity found")
index_inf = np.where(is_inf)[0][0]
tris = hull_tris_projected_back(vertices, index_inf=index_inf)
total = 0.0
for (z1, z2, z3) in tris:
total += triangle_volume(z1, z2, z3)
return total
def compute_volume_delaunay_method(vertices: np.ndarray) -> float:
"""
Compute polyhedron volume using Delaunay triangulation.
This method:
1. Takes only finite vertices
2. Computes Delaunay triangulation in the plane
3. Sums volumes of all triangles (implicitly with β as apex)
Note: This assumes β is one of the vertices. All finite vertices
are triangulated and each triangle forms a tetrahedron with β.
Args:
vertices: Complex array of all vertices (including β)
Returns:
Total volume
"""
# Filter out infinity
is_finite = np.isfinite(vertices.real) & np.isfinite(vertices.imag)
z_finite = vertices[is_finite]
if len(z_finite) < 3:
raise ValueError("Need at least 3 finite vertices for triangulation")
idx_tris = delaunay_triangulation_indices(z_finite)
total = 0.0
for (i, j, k) in idx_tris:
z1, z2, z3 = z_finite[i], z_finite[j], z_finite[k]
total += triangle_volume(z1, z2, z3)
return total
# ============================================================================
# Main API
# ============================================================================
def compute_volume(vertices, method="auto", series_terms=64):
"""
Compute volume of ideal hyperbolic polyhedron from vertex coordinates.
The polyhedron is determined by vertices in C βͺ {β}. The volume is
computed by triangulating the finite vertices and summing the volumes
of the resulting ideal tetrahedra.
Args:
vertices: Array-like of complex numbers and/or np.inf
Can include 0, 1, β, and additional points
method: "auto", "hull", or "delaunay"
- "auto": Use Delaunay if β present, else hull
- "hull": Lift to sphere, convex hull, project back
- "delaunay": Delaunay triangulation of finite vertices
series_terms: Number of terms in Lobachevsky series (default 64)
Returns:
Volume of the ideal polyhedron
Examples:
>>> # Tetrahedron with vertices at 0, 1, i, β
>>> vertices = [0+0j, 1+0j, 1j, np.inf]
>>> vol = compute_volume(vertices)
>>> # Polyhedron with 7 vertices (0, 1, i, β + 3 random)
>>> vertices = [0+0j, 1+0j, 1j, np.inf, 0.5+0.3j, -0.2+0.7j, 0.8-0.1j]
>>> vol = compute_volume(vertices)
"""
# Convert to numpy array
vertices = np.asarray(vertices, dtype=complex)
# Check if infinity is present
has_inf = np.any(~np.isfinite(vertices.real) | ~np.isfinite(vertices.imag))
# Choose method
if method == "auto":
method = "delaunay" if has_inf else "hull"
if method == "delaunay":
if not has_inf:
raise ValueError("Delaunay method requires vertex at infinity")
return compute_volume_delaunay_method(vertices)
elif method == "hull":
if not has_inf:
# Add infinity if not present
vertices = np.append(vertices, np.inf)
return compute_volume_hull_method(vertices)
else:
raise ValueError(f"Unknown method: {method}")
def volume_exceeds_threshold(vertices, threshold):
"""
Check if ideal polyhedron volume exceeds a threshold.
This is the main API function. Given vertices (which implicitly or
explicitly include 0, 1, and β), compute the volume and check if
it exceeds the given threshold.
Args:
vertices: Array-like of complex numbers (and optionally np.inf)
Should include or implicitly represent 0, 1, β
threshold: Real number to compare against
Returns:
True if volume > threshold, False otherwise
Examples:
>>> # Check if tetrahedron volume > 1.0
>>> vertices = [0+0j, 1+0j, 1j, np.inf]
>>> result = volume_exceeds_threshold(vertices, 1.0)
>>> print(result) # True or False
>>> # With additional vertices
>>> vertices = [0+0j, 1+0j, 1j, np.inf, 0.5+0.5j, -0.3+0.8j]
>>> result = volume_exceeds_threshold(vertices, 2.5)
"""
volume = compute_volume(vertices)
return volume > threshold
def get_volume(vertices):
"""
Convenience function to get the exact volume value.
Args:
vertices: Array-like of complex numbers (and optionally np.inf)
Returns:
Volume as a float
Examples:
>>> vertices = [0+0j, 1+0j, 1j, np.inf]
>>> vol = get_volume(vertices)
>>> print(f"Volume: {vol:.6f}")
"""
return compute_volume(vertices)
|