idealpolyhedra / examples /optimization /optimize_lbfgs_delaunay_5points.py
igriv's picture
Major reorganization and feature additions
d7d27f0
import argparse, numpy as np, torch, time
from ideal_poly_volume_toolkit.geometry import (
delaunay_triangulation_indices,
triangle_volume_from_points_torch,
)
def random_complex_points(K, rng):
"""Generate K random complex points"""
# Start with points roughly on unit circle but with some variation
r = 0.5 + 1.0 * rng.random(K)
theta = 2 * np.pi * rng.random(K)
return r * np.exp(1j * theta)
def build_Z_free(real_parts: torch.Tensor, imag_parts: torch.Tensor) -> torch.Tensor:
"""Build complex array from real and imaginary parts"""
Z = torch.empty(real_parts.numel() + 2, dtype=torch.complex128, device=real_parts.device)
Z[0] = 0 + 0j # Fixed at origin
Z[1] = 1 + 0j # Fixed at 1
Z[2:] = torch.complex(real_parts, imag_parts)
return Z
def torch_sum_volume(Z_t: torch.Tensor, idx, series_terms: int) -> torch.Tensor:
total = torch.zeros((), dtype=torch.float64, device=Z_t.device)
for (i, j, k) in idx:
total = total + triangle_volume_from_points_torch(
Z_t[i], Z_t[j], Z_t[k], series_terms=series_terms
)
return total
def main():
ap = argparse.ArgumentParser()
ap.add_argument('--seed', type=int, default=0)
ap.add_argument('--iters', type=int, default=200)
ap.add_argument('--series', type=int, default=96)
ap.add_argument('--print-every', type=int, default=20)
ap.add_argument('--device', type=str, default='cpu')
ap.add_argument('--lr', type=float, default=1.0)
args = ap.parse_args()
rng = np.random.default_rng(args.seed)
K = 5 # Five free points
# Initialize with random complex points
z_init = random_complex_points(K, rng)
real_parts = torch.tensor(z_init.real, dtype=torch.float64, device=args.device, requires_grad=True)
imag_parts = torch.tensor(z_init.imag, dtype=torch.float64, device=args.device, requires_grad=True)
print(f"Initial points (besides 0 and 1):")
for i in range(K):
print(f" z[{i+2}] = {real_parts[i].item():.4f} + {imag_parts[i].item():.4f}i")
# Use LBFGS optimizer on both real and imaginary parts
opt = torch.optim.LBFGS([real_parts, imag_parts], lr=args.lr, max_iter=20, line_search_fn='strong_wolfe')
history = []
triangulation_changes = 0
prev_triangulation = None
t0 = time.time()
for it in range(1, args.iters + 1):
# Rebuild Delaunay triangulation
with torch.no_grad():
Z_np = build_Z_free(real_parts, imag_parts).detach().cpu().numpy()
idx = delaunay_triangulation_indices(Z_np)
# Check if triangulation changed
if prev_triangulation is not None:
if idx.shape != prev_triangulation.shape or not np.array_equal(idx, prev_triangulation):
triangulation_changes += 1
if it <= 10 or it % args.print_every == 0:
print(f" [Triangulation changed at iteration {it}]")
prev_triangulation = idx.copy()
# Closure for LBFGS
def closure():
opt.zero_grad(set_to_none=True)
Z_t = build_Z_free(real_parts, imag_parts)
total = torch_sum_volume(Z_t, idx, args.series)
loss = -total # maximize volume
loss.backward()
# Clip gradients to prevent instability
torch.nn.utils.clip_grad_norm_([real_parts, imag_parts], max_norm=10.0)
return loss
opt.step(closure)
# Log progress
with torch.no_grad():
Z_post = build_Z_free(real_parts, imag_parts)
val_post = torch_sum_volume(Z_post, idx, args.series)
history.append(float(val_post.item()))
if it % args.print_every == 0 or it in (1, args.iters):
print(f'\n[{it:03d}] volume ~ {history[-1]:.10f} (tris={idx.shape[0]})')
# Print current positions
for i in range(K):
z = complex(real_parts[i].item(), imag_parts[i].item())
r, theta = abs(z), np.angle(z) * 180/np.pi
print(f' z[{i+2}] = {z.real:+.4f} {z.imag:+.4f}i (r={r:.4f}, θ={theta:+.1f}°)')
t1 = time.time()
# Final exact evaluation
with torch.no_grad():
Zf = build_Z_free(real_parts, imag_parts).detach().cpu().numpy()
from ideal_poly_volume_toolkit.geometry import ideal_poly_volume_via_delaunay
vol_exact = ideal_poly_volume_via_delaunay(Zf, mode='eval_only', dps=250)
print('\n=== Optimization (5 free points) done ===')
print(f'iters={args.iters}, time={t1-t0:.2f}s')
print(f'triangulation changes: {triangulation_changes}')
print(f'initial volume ~ {history[0] if history else 0:.10f}')
print(f'final fast volume ~ {history[-1]:.10f}')
print(f'final exact volume {vol_exact:.12f}')
print('\nFinal configuration:')
print(' z[0] = 0.0000 + 0.0000i (fixed)')
print(' z[1] = 1.0000 + 0.0000i (fixed)')
for i in range(K):
z = complex(real_parts[i].item(), imag_parts[i].item())
r, theta = abs(z), np.angle(z) * 180/np.pi
print(f' z[{i+2}] = {z.real:+.4f} {z.imag:+.4f}i (r={r:.4f}, θ={theta:+.1f}°)')
print('\nExpected volumes:')
print(' Regular tetrahedron: ~1.0149')
print(' Regular cube: ~5.0747 (5 × tetrahedron)')
print(f' Our result: {vol_exact:.4f}')
# Check distances between points
print('\nPairwise distances:')
Z_final = build_Z_free(real_parts, imag_parts).detach().numpy()
for i in range(len(Z_final)):
for j in range(i+1, len(Z_final)):
dist = abs(Z_final[i] - Z_final[j])
if dist > 0.01: # Skip very small distances
print(f' |z[{i}] - z[{j}]| = {dist:.4f}')
if __name__ == '__main__':
main()