import argparse, numpy as np, torch, time from ideal_poly_volume_toolkit.geometry import triangle_volume_from_points_torch def main(): ap = argparse.ArgumentParser() ap.add_argument('--init-angle', type=float, default=0.5, help='Initial angle in radians') ap.add_argument('--iters', type=int, default=50) ap.add_argument('--series', type=int, default=96) ap.add_argument('--print-every', type=int, default=5) ap.add_argument('--device', type=str, default='cpu') args = ap.parse_args() # Single angle parameter theta = torch.tensor(args.init_angle, dtype=torch.float64, device=args.device, requires_grad=True) print(f"Initial theta: {theta.item():.6f} radians ({theta.item() * 180/np.pi:.2f} degrees)") # Use LBFGS optimizer opt = torch.optim.LBFGS([theta], lr=1.0, max_iter=20, line_search_fn='strong_wolfe') history = [] grad_history = [] t0 = time.time() for it in range(1, args.iters + 1): def closure(): opt.zero_grad(set_to_none=True) # Triangle vertices: 0, 1, exp(i*theta) z0 = torch.tensor(0+0j, dtype=torch.complex128, device=theta.device) z1 = torch.tensor(1+0j, dtype=torch.complex128, device=theta.device) z2 = torch.exp(1j * theta.to(torch.complex128)) volume = triangle_volume_from_points_torch(z0, z1, z2, series_terms=args.series) loss = -volume # maximize volume loss.backward() return loss opt.step(closure) # Log progress with torch.no_grad(): z0 = torch.tensor(0+0j, dtype=torch.complex128, device=theta.device) z1 = torch.tensor(1+0j, dtype=torch.complex128, device=theta.device) z2 = torch.exp(1j * theta.to(torch.complex128)) vol = triangle_volume_from_points_torch(z0, z1, z2, series_terms=args.series) history.append(vol.item()) grad_history.append(theta.grad.item() if theta.grad is not None else 0) if it % args.print_every == 0 or it in (1, args.iters): print(f'[{it:03d}] volume = {history[-1]:.10f}, theta = {theta.item():.6f} rad ({theta.item() * 180/np.pi:.2f}°), |grad| = {abs(grad_history[-1]):.8f}') t1 = time.time() # Final exact evaluation with torch.no_grad(): from ideal_poly_volume_toolkit.geometry import triangle_volume_from_points z0, z1, z2 = 0+0j, 1+0j, np.exp(1j * theta.item()) vol_exact = triangle_volume_from_points(z0, z1, z2, mode='exact', dps=250) print('\n=== Simplex optimization done ===') print(f'iters={args.iters}, time={t1-t0:.2f}s') print(f'initial volume ~ {vol_exact if it == 1 else history[0]:.10f}') print(f'final fast volume ~ {history[-1]:.10f}') print(f'final exact volume {vol_exact:.12f}') print(f'final theta: {theta.item():.6f} radians ({theta.item() * 180/np.pi:.2f} degrees)') # The theoretical maximum for a triangle with vertices at 0, 1, exp(i*theta) occurs at theta = π/2 print(f'\nExpected optimal theta: {np.pi/2:.6f} radians (90.00 degrees)') print(f'Distance from optimum: {abs(theta.item() - np.pi/2):.6f} radians ({abs(theta.item() - np.pi/2) * 180/np.pi:.2f} degrees)') if __name__ == '__main__': main()