""" 3D Visualization utilities for ideal polyhedra. Supports: - Poincaré ball model visualization - Sphere projection with subdivision - Interactive plots using plotly """ import numpy as np import plotly.graph_objects as go from scipy.spatial import ConvexHull def lift_to_sphere_with_inf(W: np.ndarray) -> np.ndarray: """ Lift complex points to sphere via stereographic projection. Args: W: Complex array of points Returns: N x 3 array of points on unit sphere """ P = np.zeros((W.shape[0], 3), dtype=np.float64) is_inf = ~np.isfinite(W.real) | ~np.isfinite(W.imag) F = ~is_inf w = W[F] r2 = (w.real**2 + w.imag**2) denom = r2 + 1.0 P[F, 0] = 2.0 * w.real / denom P[F, 1] = 2.0 * w.imag / denom P[F, 2] = (r2 - 1.0) / denom P[is_inf] = np.array([0.0, 0.0, 1.0]) return P def subdivide_triangle_euclidean(v1, v2, v3, depth=1): """ Recursively subdivide a triangle using Euclidean (straight line) midpoints. This is used for subdividing in the Klein model (unit ball with Euclidean geometry). Args: v1, v2, v3: Triangle vertices (3D points in the ball) depth: Number of subdivision levels Returns: List of subdivided triangular faces """ if depth == 0: return [np.array([v1, v2, v3])] # Compute Euclidean midpoints (straight lines in Klein model) m12 = (v1 + v2) / 2.0 m23 = (v2 + v3) / 2.0 m31 = (v3 + v1) / 2.0 # Recursively subdivide 4 new triangles triangles = [] triangles.extend(subdivide_triangle_euclidean(v1, m12, m31, depth - 1)) triangles.extend(subdivide_triangle_euclidean(v2, m23, m12, depth - 1)) triangles.extend(subdivide_triangle_euclidean(v3, m31, m23, depth - 1)) triangles.extend(subdivide_triangle_euclidean(m12, m23, m31, depth - 1)) return triangles def klein_to_poincare(K: np.ndarray) -> np.ndarray: """ Map Klein ball model to Poincaré ball model. The Klein model uses the unit ball with Euclidean (straight line) geodesics. The Poincaré model uses the same ball with hyperbolic (curved) geodesics. Formula: If k is a point in Klein ball with |k| < 1, then p = k / (1 + sqrt(1 - |k|^2)) Args: K: N x 3 array of points in Klein ball Returns: N x 3 array of points in Poincaré ball """ r_squared = np.sum(K**2, axis=1) # Clip to avoid numerical issues near boundary r_squared = np.clip(r_squared, 0, 0.9999) # Klein to Poincaré transformation denom = 1.0 + np.sqrt(1.0 - r_squared) result = K / denom[:, np.newaxis] return result def create_polyhedron_mesh(vertices_complex, subdivisions=2): """ Create a subdivided mesh for visualization. Algorithm: 1. Lift to sphere (gives Klein model in the ball) 2. Get convex hull faces 3. Subdivide each face using Euclidean midpoints (Klein model) 4. Map subdivided vertices Klein → Poincaré Args: vertices_complex: Complex array of vertices subdivisions: Number of subdivision levels Returns: dict with 'klein' and 'poincare' meshes """ # Step 1: Lift to sphere (this gives us the Klein model in the ball) klein_vertices = lift_to_sphere_with_inf(vertices_complex) # Step 2: Compute convex hull (this is the Klein model of the polyhedron) hull = ConvexHull(klein_vertices) # Step 3 & 4: Subdivide each face in Klein, then map to Poincaré subdivided_triangles_klein = [] subdivided_triangles_poincare = [] for simplex in hull.simplices: v1, v2, v3 = klein_vertices[simplex] # Subdivide in Klein model (Euclidean straight-line subdivision) sub_tris_klein = subdivide_triangle_euclidean(v1, v2, v3, depth=subdivisions) subdivided_triangles_klein.extend(sub_tris_klein) # Map each subdivided triangle to Poincaré ball for tri_klein in sub_tris_klein: tri_poincare = klein_to_poincare(tri_klein) subdivided_triangles_poincare.append(tri_poincare) return { 'klein': { 'triangles': subdivided_triangles_klein, 'vertices': klein_vertices, 'original_faces': hull.simplices }, 'poincare': { 'triangles': subdivided_triangles_poincare, 'vertices': klein_to_poincare(klein_vertices), 'original_faces': hull.simplices } } def plot_polyhedron_klein(vertices_complex, subdivisions=2, title="Ideal Polyhedron (Klein Model)"): """ Create interactive 3D plot of polyhedron in Klein ball model. Args: vertices_complex: Complex array of vertices subdivisions: Number of subdivision levels title: Plot title Returns: plotly Figure object """ mesh = create_polyhedron_mesh(vertices_complex, subdivisions) triangles = mesh['klein']['triangles'] # Collect all vertices and triangle indices for Mesh3d vertices_list = [] indices_i, indices_j, indices_k = [], [], [] vertex_map = {} for tri in triangles: tri_indices = [] for i in range(3): vertex_tuple = tuple(tri[i]) if vertex_tuple not in vertex_map: vertex_map[vertex_tuple] = len(vertices_list) vertices_list.append(tri[i]) tri_indices.append(vertex_map[vertex_tuple]) # Add triangle indices indices_i.append(tri_indices[0]) indices_j.append(tri_indices[1]) indices_k.append(tri_indices[2]) vertices_array = np.array(vertices_list) # Create figure fig = go.Figure() # Add polyhedron as a mesh surface fig.add_trace(go.Mesh3d( x=vertices_array[:, 0], y=vertices_array[:, 1], z=vertices_array[:, 2], i=indices_i, j=indices_j, k=indices_k, color='lightblue', opacity=0.7, flatshading=False, name='Polyhedron', hoverinfo='skip' )) # Add vertices vertices = mesh['klein']['vertices'] fig.add_trace(go.Scatter3d( x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2], mode='markers', marker=dict(size=8, color='red'), name='Vertices', hovertext=[f'Vertex {i}' for i in range(len(vertices))] )) # Add transparent ball for reference u = np.linspace(0, 2 * np.pi, 30) v = np.linspace(0, np.pi, 20) x_ball = np.outer(np.cos(u), np.sin(v)) y_ball = np.outer(np.sin(u), np.sin(v)) z_ball = np.outer(np.ones(np.size(u)), np.cos(v)) fig.add_trace(go.Surface( x=x_ball, y=y_ball, z=z_ball, opacity=0.1, colorscale=[[0, 'lightgray'], [1, 'lightgray']], showscale=False, name='Unit Ball', hoverinfo='skip' )) # Layout fig.update_layout( title=title, scene=dict( xaxis=dict(range=[-1.2, 1.2], title='X'), yaxis=dict(range=[-1.2, 1.2], title='Y'), zaxis=dict(range=[-1.2, 1.2], title='Z'), aspectmode='cube' ), showlegend=True, width=800, height=800 ) return fig def plot_polyhedron_poincare(vertices_complex, subdivisions=2, title="Ideal Polyhedron (Poincaré Ball)"): """ Create interactive 3D plot of polyhedron in Poincaré ball model. Args: vertices_complex: Complex array of vertices subdivisions: Number of subdivision levels title: Plot title Returns: plotly Figure object """ mesh = create_polyhedron_mesh(vertices_complex, subdivisions) triangles = mesh['poincare']['triangles'] # Collect all vertices and triangle indices for Mesh3d vertices_list = [] indices_i, indices_j, indices_k = [], [], [] vertex_map = {} for tri in triangles: tri_indices = [] for i in range(3): vertex_tuple = tuple(tri[i]) if vertex_tuple not in vertex_map: vertex_map[vertex_tuple] = len(vertices_list) vertices_list.append(tri[i]) tri_indices.append(vertex_map[vertex_tuple]) # Add triangle indices indices_i.append(tri_indices[0]) indices_j.append(tri_indices[1]) indices_k.append(tri_indices[2]) vertices_array = np.array(vertices_list) # Create figure fig = go.Figure() # Add polyhedron as a mesh surface fig.add_trace(go.Mesh3d( x=vertices_array[:, 0], y=vertices_array[:, 1], z=vertices_array[:, 2], i=indices_i, j=indices_j, k=indices_k, color='lightblue', opacity=0.7, flatshading=False, name='Polyhedron', hoverinfo='skip' )) # Add vertices vertices = mesh['poincare']['vertices'] fig.add_trace(go.Scatter3d( x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2], mode='markers', marker=dict(size=8, color='red'), name='Vertices', hovertext=[f'Vertex {i}' for i in range(len(vertices))] )) # Add unit sphere boundary u = np.linspace(0, 2 * np.pi, 30) v = np.linspace(0, np.pi, 20) x_sphere = np.outer(np.cos(u), np.sin(v)) y_sphere = np.outer(np.sin(u), np.sin(v)) z_sphere = np.outer(np.ones(np.size(u)), np.cos(v)) fig.add_trace(go.Surface( x=x_sphere, y=y_sphere, z=z_sphere, opacity=0.1, colorscale=[[0, 'lightgray'], [1, 'lightgray']], showscale=False, name='Unit Ball', hoverinfo='skip' )) # Layout fig.update_layout( title=title, scene=dict( xaxis=dict(range=[-1.2, 1.2], title='X'), yaxis=dict(range=[-1.2, 1.2], title='Y'), zaxis=dict(range=[-1.2, 1.2], title='Z'), aspectmode='cube' ), showlegend=True, width=800, height=800 ) return fig def plot_delaunay_2d(vertices_complex, triangulation_indices, title="Delaunay Triangulation"): """ Create 2D plot of Delaunay triangulation in complex plane. Args: vertices_complex: Complex array of vertices triangulation_indices: Array of triangle indices title: Plot title Returns: plotly Figure object """ fig = go.Figure() # Plot triangulation edges for tri in triangulation_indices: i, j, k = tri vertices_tri = vertices_complex[[i, j, k, i]] # Close the triangle fig.add_trace(go.Scatter( x=vertices_tri.real, y=vertices_tri.imag, mode='lines', line=dict(color='blue', width=1), showlegend=False, hoverinfo='skip' )) # Plot vertices fig.add_trace(go.Scatter( x=vertices_complex.real, y=vertices_complex.imag, mode='markers+text', marker=dict(size=10, color='red'), text=[f'{i}' for i in range(len(vertices_complex))], textposition='top center', name='Vertices', hovertext=[f'Vertex {i}: {z:.3f}' for i, z in enumerate(vertices_complex)] )) # Layout fig.update_layout( title=title, xaxis_title='Real', yaxis_title='Imaginary', width=700, height=700, showlegend=True, hovermode='closest' ) fig.update_xaxes(scaleanchor="y", scaleratio=1) return fig