File size: 7,390 Bytes
1a5d173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
digraph {
	graph [size="30.75,30.75"]
	node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]
	5224613344 [label="
 (1, 4)" fillcolor=darkolivegreen1]
	5224438512 [label=AddmmBackward0]
	5224438224 -> 5224438512
	5225252960 [label="fc.10.bias
 (4)" fillcolor=lightblue]
	5225252960 -> 5224438224
	5224438224 [label=AccumulateGrad]
	5224438320 -> 5224438512
	5224438320 [label=ReluBackward0]
	5224438368 -> 5224438320
	5224438368 [label=AddmmBackward0]
	5224438080 -> 5224438368
	5225252800 [label="fc.8.bias
 (16)" fillcolor=lightblue]
	5225252800 -> 5224438080
	5224438080 [label=AccumulateGrad]
	5224438128 -> 5224438368
	5224438128 [label=ReluBackward0]
	5224437984 -> 5224438128
	5224437984 [label=AddmmBackward0]
	5224437792 -> 5224437984
	5225252640 [label="fc.6.bias
 (32)" fillcolor=lightblue]
	5225252640 -> 5224437792
	5224437792 [label=AccumulateGrad]
	5224437840 -> 5224437984
	5224437840 [label=ReluBackward0]
	5224437696 -> 5224437840
	5224437696 [label=AddmmBackward0]
	5224437552 -> 5224437696
	5225252480 [label="fc.4.bias
 (64)" fillcolor=lightblue]
	5225252480 -> 5224437552
	5224437552 [label=AccumulateGrad]
	5224437312 -> 5224437696
	5224437312 [label=ReluBackward0]
	4986133616 -> 5224437312
	4986133616 [label=AddmmBackward0]
	4478509936 -> 4986133616
	5225252320 [label="fc.2.bias
 (128)" fillcolor=lightblue]
	5225252320 -> 4478509936
	4478509936 [label=AccumulateGrad]
	4478865216 -> 4986133616
	4478865216 [label=ReluBackward0]
	5225134064 -> 4478865216
	5225134064 [label=AddmmBackward0]
	5225133776 -> 5225134064
	5225252160 [label="fc.0.bias
 (256)" fillcolor=lightblue]
	5225252160 -> 5225133776
	5225133776 [label=AccumulateGrad]
	5225133824 -> 5225134064
	5225133824 [label=ViewBackward0]
	5225133632 -> 5225133824
	5225133632 [label=MulBackward0]
	5225135648 -> 5225133632
	5225135648 [label=ReluBackward0]
	5225135744 -> 5225135648
	5225135744 [label=NativeBatchNormBackward0]
	5225135840 -> 5225135744
	5225135840 [label=ConvolutionBackward0]
	5225136032 -> 5225135840
	5225136032 [label=MulBackward0]
	5224718496 -> 5225136032
	5224718496 [label=ReluBackward0]
	5224718592 -> 5224718496
	5224718592 [label=NativeBatchNormBackward0]
	5224718688 -> 5224718592
	5224718688 [label=ConvolutionBackward0]
	5224718880 -> 5224718688
	5224718880 [label=MulBackward0]
	5224719072 -> 5224718880
	5224719072 [label=ReluBackward0]
	5224719168 -> 5224719072
	5224719168 [label=NativeBatchNormBackward0]
	5224719264 -> 5224719168
	5224719264 [label=ConvolutionBackward0]
	5224719456 -> 5224719264
	5224719456 [label=MulBackward0]
	5224719648 -> 5224719456
	5224719648 [label=ReluBackward0]
	5224719744 -> 5224719648
	5224719744 [label=NativeBatchNormBackward0]
	5224719840 -> 5224719744
	5224719840 [label=ConvolutionBackward0]
	5224720032 -> 5224719840
	5224720032 [label=MulBackward0]
	5224720224 -> 5224720032
	5224720224 [label=ReluBackward0]
	5224720320 -> 5224720224
	5224720320 [label=NativeBatchNormBackward0]
	5224720416 -> 5224720320
	5224720416 [label=ConvolutionBackward0]
	5224720608 -> 5224720416
	5224790912 [label="layer1.0.weight
 (16, 1, 5, 5)" fillcolor=lightblue]
	5224790912 -> 5224720608
	5224720608 [label=AccumulateGrad]
	5224720560 -> 5224720416
	5224791152 [label="layer1.0.bias
 (16)" fillcolor=lightblue]
	5224791152 -> 5224720560
	5224720560 [label=AccumulateGrad]
	5224720368 -> 5224720320
	5224788992 [label="layer1.1.weight
 (16)" fillcolor=lightblue]
	5224788992 -> 5224720368
	5224720368 [label=AccumulateGrad]
	5224720128 -> 5224720320
	5225146624 [label="layer1.1.bias
 (16)" fillcolor=lightblue]
	5225146624 -> 5224720128
	5224720128 [label=AccumulateGrad]
	5224719984 -> 5224719840
	5225147104 [label="layer2.0.weight
 (32, 16, 5, 5)" fillcolor=lightblue]
	5225147104 -> 5224719984
	5224719984 [label=AccumulateGrad]
	5224719936 -> 5224719840
	5225147184 [label="layer2.0.bias
 (32)" fillcolor=lightblue]
	5225147184 -> 5224719936
	5224719936 [label=AccumulateGrad]
	5224719792 -> 5224719744
	5225147264 [label="layer2.1.weight
 (32)" fillcolor=lightblue]
	5225147264 -> 5224719792
	5224719792 [label=AccumulateGrad]
	5224719552 -> 5224719744
	5225147344 [label="layer2.1.bias
 (32)" fillcolor=lightblue]
	5225147344 -> 5224719552
	5224719552 [label=AccumulateGrad]
	5224719408 -> 5224719264
	5225147744 [label="layer3.0.weight
 (64, 32, 5, 5)" fillcolor=lightblue]
	5225147744 -> 5224719408
	5224719408 [label=AccumulateGrad]
	5224719360 -> 5224719264
	5225147824 [label="layer3.0.bias
 (64)" fillcolor=lightblue]
	5225147824 -> 5224719360
	5224719360 [label=AccumulateGrad]
	5224719216 -> 5224719168
	5225147904 [label="layer3.1.weight
 (64)" fillcolor=lightblue]
	5225147904 -> 5224719216
	5224719216 [label=AccumulateGrad]
	5224718976 -> 5224719168
	5225147984 [label="layer3.1.bias
 (64)" fillcolor=lightblue]
	5225147984 -> 5224718976
	5224718976 [label=AccumulateGrad]
	5224718832 -> 5224718688
	5225250880 [label="layer4.0.weight
 (128, 64, 5, 5)" fillcolor=lightblue]
	5225250880 -> 5224718832
	5224718832 [label=AccumulateGrad]
	5224718784 -> 5224718688
	5225250960 [label="layer4.0.bias
 (128)" fillcolor=lightblue]
	5225250960 -> 5224718784
	5224718784 [label=AccumulateGrad]
	5224718640 -> 5224718592
	5225251040 [label="layer4.1.weight
 (128)" fillcolor=lightblue]
	5225251040 -> 5224718640
	5224718640 [label=AccumulateGrad]
	5224718400 -> 5224718592
	5225251120 [label="layer4.1.bias
 (128)" fillcolor=lightblue]
	5225251120 -> 5224718400
	5224718400 [label=AccumulateGrad]
	5225135984 -> 5225135840
	5225251520 [label="layer5.0.weight
 (256, 128, 5, 5)" fillcolor=lightblue]
	5225251520 -> 5225135984
	5225135984 [label=AccumulateGrad]
	5225135936 -> 5225135840
	5225251600 [label="layer5.0.bias
 (256)" fillcolor=lightblue]
	5225251600 -> 5225135936
	5225135936 [label=AccumulateGrad]
	5225135792 -> 5225135744
	5225251680 [label="layer5.1.weight
 (256)" fillcolor=lightblue]
	5225251680 -> 5225135792
	5225135792 [label=AccumulateGrad]
	5225135552 -> 5225135744
	5225251760 [label="layer5.1.bias
 (256)" fillcolor=lightblue]
	5225251760 -> 5225135552
	5225135552 [label=AccumulateGrad]
	5225133872 -> 5225134064
	5225133872 [label=TBackward0]
	5225135696 -> 5225133872
	5225252080 [label="fc.0.weight
 (256, 200704)" fillcolor=lightblue]
	5225252080 -> 5225135696
	5225135696 [label=AccumulateGrad]
	5225134160 -> 4986133616
	5225134160 [label=TBackward0]
	5225135600 -> 5225134160
	5225252240 [label="fc.2.weight
 (128, 256)" fillcolor=lightblue]
	5225252240 -> 5225135600
	5225135600 [label=AccumulateGrad]
	5224437504 -> 5224437696
	5224437504 [label=TBackward0]
	4986133568 -> 5224437504
	5225252400 [label="fc.4.weight
 (64, 128)" fillcolor=lightblue]
	5225252400 -> 4986133568
	4986133568 [label=AccumulateGrad]
	5224437888 -> 5224437984
	5224437888 [label=TBackward0]
	5192022144 -> 5224437888
	5225252560 [label="fc.6.weight
 (32, 64)" fillcolor=lightblue]
	5225252560 -> 5192022144
	5192022144 [label=AccumulateGrad]
	5224438416 -> 5224438368
	5224438416 [label=TBackward0]
	5224437648 -> 5224438416
	5225252720 [label="fc.8.weight
 (16, 32)" fillcolor=lightblue]
	5225252720 -> 5224437648
	5224437648 [label=AccumulateGrad]
	5224438272 -> 5224438512
	5224438272 [label=TBackward0]
	5224437744 -> 5224438272
	5225252880 [label="fc.10.weight
 (4, 16)" fillcolor=lightblue]
	5225252880 -> 5224437744
	5224437744 [label=AccumulateGrad]
	5224438512 -> 5224613344
}